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In this paper, the concept of sparse difference resultant for a 
Laurent transformally essential system of difference polynomials 
is introduced and a simple criterion for the existence of sparse 
difference resultant is given. The concept of transformally homoge-
nous polynomial is introduced and the sparse difference resultant 
is proved to be transformally homogenous. It is shown that the 
vanishing of the sparse difference resultant gives a necessary 
condition for the corresponding difference polynomial system 
to have non-zero solutions. Order and degree bounds for the 
sparse difference resultant are given. Based on these bounds, an 
algorithm to compute the sparse difference resultant is proposed, 
which is single exponential in terms of the number of variables, 
the Jacobi number, and the size of the Laurent transformally 
essential system. Furthermore, the precise order and degree, 
a determinant representation, and a Poisson-type product formula 
for the difference resultant are given.
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1. Introduction

The resultant, which gives conditions for an over-determined system of polynomial equations to 
have common solutions, is a basic concept in algebraic geometry and a powerful tool in elimination 
theory (Canny, 1990; Cox et al., 1998; Eisenbud et al., 2004; Hodge and Pedoe, 1968; Jouanolou, 1991;
Sturmfels, 1993). The concept of sparse resultant originated from the work of Gelfand, Kapranov, and 
Zelevinsky on generalized hypergeometric functions, where the central concept of A-discriminant 
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is studied (Gelfand et al., 1994). Kapranov, Sturmfels, and Zelevinsky introduced the A-resultant 
(Kapranov et al., 1992). Sturmfels further introduced the general mixed sparse resultant and gave 
a single exponential algorithm to compute the sparse resultant (Sturmfels, 1993, 1994). Canny and 
Emiris showed that the sparse resultant is a factor of the determinant of a Macaulay style matrix 
and gave an efficient algorithm to compute the sparse resultant based on this matrix representation 
(Emiris and Canny, 1995). A precise determinant representation for the sparse resultant was given 
by D’Andrea (2002). Recently, a rigorous definition for the multivariate differential resultant was pre-
sented (Gao et al., 2013) and also the theory of sparse differential resultants for Laurent differentially 
essential systems was developed (Li et al., 2011, 2012).

In this paper, the concept of sparse difference resultant for a Laurent transformally essential system 
consisting of n + 1 Laurent difference polynomials in n difference variables is introduced and its basic 
properties are proved. A criterion is given to check whether a Laurent difference system is essential in 
terms of their supports, which is conceptually and computationally simpler than the naive approach 
based on the characteristic set method. The concept of transformal homogeneity is introduced and it 
is proved that the sparse difference resultant is transformally homogeneous. It is also shown that the 
sparse difference resultant is equal to the algebraic sparse resultant of a generic sparse polynomial 
system, and hence has a determinant representation.

It is shown that the vanishing of the sparse difference resultant gives a necessary condition for 
the corresponding difference polynomial system to have nonzero solutions, which is also sufficient in 
a certain sense. The concepts of difference projective space and transformal completeness are intro-
duced and the projective space is shown to be not transformally complete using the sparse difference 
resultant for a set of specific difference polynomials. It is a classic result that the algebraic projec-
tive space is complete (Eisenbud, 1995, p. 303) and the differential projective space is not complete 
(Kolchin, 1974).

We give order and degree bounds for the sparse difference resultant. It is shown that the order 
and effective order of the sparse difference resultant can be bounded by the Jacobi number of the 
corresponding difference polynomial system and the degree can be bounded by a Bézout type bound. 
Based on these bounds, an algorithm is given to compute the sparse difference resultant. The com-
plexity of the algorithm in the worst case is single exponential in terms of the number of variables, 
the degree, the Jacobi number, and the size of the Laurent transformally essential system, respectively.

For the difference resultant, which is non-sparse, more and better properties are proved including 
its precise order and degree, a determinant representation, and a Poisson-type product formula.

Although most properties for sparse difference resultants and difference resultants are similar 
to their differential counterparts given in Li et al. (2012) and Gao et al. (2013), some of them 
are quite different in terms of descriptions and proofs due to the distinct nature of the differ-
ential and difference operators. First, the definition for the difference resultant is more subtle 
than the differential case as illustrated by Problem 23. Second, the criterion for Laurent transfor-
mally essential systems given in Section 3.3 is quite different and much simpler than its differ-
ential counterpart given in Li et al. (2012). Also, determinant representations for the sparse dif-
ference resultant and the difference resultant are given in Sections 5 and 7, but such a represen-
tation is still not known for differential resultants (Zhang et al., 2012; Rueda and Sendra, 2010;
Rueda, 2013). Finally, there does not exist a definition for homogeneous difference polynomials, and 
the definition given in this paper is different from its differential counterpart (Li and Gao, 2012).

The rest of the paper is organized as follows. In Section 2, we prove some preliminary results. In 
Section 3, we first introduce the concepts of Laurent difference polynomials and Laurent transformally 
essential systems, and then define the sparse difference resultant for Laurent transformally essential 
systems. Basic properties of the sparse difference resultant are proved in Section 4. In Section 5, the 
sparse difference resultant is shown to be the algebraic sparse resultant for a certain generic poly-
nomial system. In Section 6, we present an algorithm to compute the sparse difference resultant. In 
Section 7, we introduce the notion of difference resultant and prove its basic properties. In Section 8, 
we conclude the paper by proposing several problems for future research. An extended abstract of 
this paper appeared in the proceedings of ISSAC2013 (Li et al., 2013). Besides detailed proofs and 
further results, Section 5 is newly added.
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2. Preliminaries

In this section, some basic notations and preliminary results in difference algebra will be given. For 
more details about difference algebra, please refer to Cohn (1965), Hrushovski (2004), Levin (2008)
and Wibmer (2013).

2.1. Difference polynomial ring

An ordinary difference field F is a field with a third unitary operation σ satisfying that for any 
a, b ∈ F , σ(a + b) = σ(a) + σ(b), σ(ab) = σ(a)σ (b), and σ(a) = 0 if and only if a = 0. We call σ the 
transforming operator of F . If a ∈ F , σ(a) is called the transform of a and is denoted by a(1) . And 
for n ∈ Z+ , σ n(a) = σ n−1(σ (a)) is called the n-th transform of a and denoted by a(n) , with the usual 
assumption a(0) = a. By a[n] we mean the set {a, a(1), . . . , a(n)}. If σ−1(a) is defined for each a ∈ F , 
we say that F is inversive. A typical example of difference field is Q(x) with σ( f (x)) = f (x + 1). All 
difference fields in this paper are assumed to be inversive with characteristic zero.

Let S be a subset of a difference field G which contains F . We will denote respectively by F [S], 
F(S), F{S}, and F〈S〉 the smallest subring, the smallest subfield, the smallest difference subring, and 
the smallest difference subfield of G containing F and S . If we denote Θ(S) = {σ k(a) | k ≥ 0, a ∈ S}, 
then we have F{S} =F [Θ(S)] and F〈S〉 =F(Θ(S)).

A subset S of a difference extension field G of F is said to be transformally dependent over F if 
the set {σ k(a) | a ∈ S, k ≥ 0} is algebraically dependent over F , and otherwise, it is said to be transfor-
mally independent over F , or to be a family of difference indeterminates over F . In the case S consists 
of only one element α, we say that α is transformally algebraic or transformally transcendental over F , 
respectively. A maximal subset Ω of G which is transformally independent over F is said to be a 
transformal transcendence basis of G over F . We use σ . tr . degG/F to denote the transformal tran-
scendence degree of G over F , which is the cardinal number of Ω . Considering F and G as ordinary 
algebraic fields, we denote the algebraic transcendence degree of G over F by tr . degG/F .

Now suppose Y = {y1, y2, . . . , yn} is a set of difference indeterminates over F . The elements of 
F{Y} = F [y(k)

j : j = 1, . . . , n; k ∈ N0] are called difference polynomials over F in Y, and F{Y} itself is 
called the difference polynomial ring over F in Y. A difference ideal I in F{Y} is an ordinary algebraic 
ideal which is closed under transforming, i.e. σ(I) ⊂ I . If I also has the property that a(1) ∈ I implies 
that a ∈ I , it is called a reflexive difference ideal. A prime difference ideal is a difference ideal which is 
prime as an ordinary algebraic polynomial ideal. For convenience, a prime difference ideal is assumed 
not to be the unit ideal in this paper. If S is a finite set of difference polynomials, we use (S) and [S]
to denote the algebraic ideal and the difference ideal in F{Y} generated by S .

An n-tuple over F is an n-tuple of the form a = (a1, . . . , an) where the ai are selected from a 
difference extension field of F . For a difference polynomial f ∈F{y1, . . . , yn}, a is called a difference 
zero of f if when substituting y( j)

i by a( j)
i in f , the result is 0. An n-tuple η is called a generic zero

of a difference ideal I ⊂ F{Y} if for any polynomial P ∈ F{Y} we have P (η) = 0 ⇔ P ∈ I . It is well 
known that

Lemma 1. (See Cohn, 1965, p. 77.) A difference ideal possesses a generic zero if and only if it is a reflexive prime 
difference ideal other than the unit ideal.

Let I be a reflexive prime difference ideal and η a generic zero of I . The dimension of I is defined 
as σ . tr . degF〈η〉/F , denoted by dim(I). If dim(I) = 0, then tr . degF〈η〉/F is defined to be the 
order of I , denoted by ord(I). Notice that the prime property depends on the difference ring where 
an ideal is defined. In the rest of the paper, to put emphasis the difference ring where difference 
ideals are generated, for any subset Σ , we will use [Σ]F{Y} or [Σ] · F{Y} to denote the difference 
ideal generated by Σ in F{Y}.

Given two n-tuples a = (a1, . . . , an) and ā = (ā1, . . . , ̄an) over F , ā is called a specialization of 
a over F , or a specializes to ā, if for any difference polynomial P ∈ F{Y}, P (a) = 0 implies that 
P (ā) = 0. The following property about difference specialization will be needed in this paper.
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Lemma 2. Let Pi(U, Y) ∈ F〈Y〉{U} (i = 1, . . . , m) where U = (u1, . . . , ur) is a set of difference indetermi-
nates. If Pi(U, Y) (i = 1, . . . , m) are transformally dependent over F〈U〉, then for any difference specialization 
U to U⊂F , Pi(U, Y) (i = 1, . . . , m) are transformally dependent over F .

Proof. It suffices to show the case r = 1. Denote u = u1. Since Pi(u, Y) (i = 1, . . . , m) are trans-
formally dependent over F〈u〉, there exist natural numbers s and l such that P(k)

i (u, Y) (k ≤ s)

are algebraically dependent over F(u(k) | k ≤ s + l). When u specializes to ū ∈ F , u(k) (k ≥ 0) are 
correspondingly algebraically specialized to ū(k) ∈ F . By Wu (2003, p. 161), P(k)

i (ū, Y) (k ≤ s) are al-
gebraically dependent over F . Thus, Pi(ū, Y) (i = 1, . . . , m) are transformally dependent over F . �
2.2. Characteristic set for a difference polynomial system

In this section, we give several preliminary results about the characteristic set for a difference 
polynomial system. For details on difference characteristic set methods, please refer to Gao et al.
(2009).

Let f be a difference polynomial in F{Y}. The order of f w.r.t. yi is defined to be the greatest 
number k such that y(k)

i appears effectively in f , denoted by ord( f , yi). The order of f is defined 
to be maxi ord( f , yi), that is, ord( f ) = maxi ord( f , yi). The least order of f w.r.t. yi is Lord( f , yi) =
min{k | deg( f , y(k)

i ) > 0} and the effective order of f w.r.t. yi is Eord( f , yi) = ord( f , yi) − Lord( f , yi). 
And if yi does not appear in f , then we set ord( f , yi) = Eord( f , yi) = −∞.

A ranking R is a total order over Θ(Y) = {σ k(yi) | 1 ≤ i ≤ n, k ≥ 0}, which satisfies the following 
properties:

1) σ(θ) > θ for each θ ∈ Θ(Y).
2) θ1 > θ2 
⇒ σ(θ1) > σ(θ2) for θ1, θ2 ∈ Θ(Y).

Let f be a difference polynomial in F{Y} and R a ranking endowed on it. The greatest y(k)
j w.r.t. 

R which appears effectively in f is called the leader of f , denoted by ld( f ) and y j is called the 
leading variable of f , denoted by lvar( f ) = y j . The leading coefficient of f as a univariate polynomial 
in ld( f ) is called the initial of f and is denoted by I f .

Let f and g be two difference polynomials in F{Y} with ld( f ) = y(k)
j . We say g is of higher 

rank than f if either ld(g) > y(k)
j , or ld(g) = y(k)

j and deg(g, y(k)
j ) > deg( f , y(k)

j ). And g is said to be 

reduced w.r.t. f if deg(g, y(k+l)
j ) < deg( f , y(k)

j ) for all l ∈ N0.
A finite chain of nonzero difference polynomials A = A1, . . . , Am is said to be an ascending chain if

1) m = 1 and A1 �= 0 or
2) m > 1, A j > Ai and A j is reduced w.r.t. Ai for 1 ≤ i < j ≤ m.

Let A = A1, A2, . . . , At be an ascending chain and f an arbitrary difference polynomial. Then there 
exists an algorithm, which reduces f w.r.t. A to a polynomial r that is reduced w.r.t. A, satisfying the 
relation

t∏
i=1

di∏
k=0

(
σ k(IAi )

)eik · f ≡ r,mod[A],

where the di , eik are nonnegative integers. The difference polynomial r is called the difference remain-
der of f w.r.t. A (Gao et al., 2009).

Let A be an ascending chain. Denote IA to be the minimal multiplicative set containing the initials 
of elements of A and their transforms. The saturation ideal of A is defined as

sat(A) = [A] : IA = {
p : ∃h ∈ IA,hp ∈ [A]}.
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And the algebraic saturation ideal of A is asat(A) = (A) : IA , where IA is the minimal multiplicative 
set containing the initials of elements of A.

An ascending chain C contained in a difference polynomial set S is said to be a characteristic set
of S , if S does not contain any nonzero element reduced w.r.t. C . A characteristic set C of a difference 
ideal J reduces all elements of J to zero.

Let A be a characteristic set of a reflexive prime difference ideal I . We rewrite A in the following 
form

A =
⎧⎨⎩

A11, . . . , A1k1· · ·
Ap1, . . . , Apkp

(1)

where lvar(Aij) = yci for j = 1, . . . , ki and ord(Aij, yci ) < ord(Ail, yci ) for j < l. In terms of a char-
acteristic set of the above form, p is equal to the codimension of I , that is n − dim(I). Unlike the 
differential case, here even though I is of codimension one, there may be more than one difference 
polynomial in a characteristic set of I as shown by the following example.

Example 3. Let A11 = (y(1)
1 )2 + y2

1 + 1, A12 = y(2)
1 − y1. Then I = [A11, A12] is a reflexive prime 

difference ideal whose characteristic set is A = A11, A12 and I = sat(A) (Gao et al., 2009). Note that 
[A11] is not a prime difference ideal, because σ(A11) − A11 = (y(2)

1 − y1)(y(2)
1 + y1) ∈ [A11] and both 

y(2)
1 − y1 and y(2)

1 + y1 are not in [A11].

Now we proceed to show that given a reflexive prime difference ideal, a property of uniqueness 
still exists among all its characteristic sets under different rankings. First of all, several algebraic re-
sults will be needed.

Let B = B1, . . . , Bm be an algebraic triangular set in F [x1, . . . , xn] with lvar(Bi) = yi and U =
{x1, . . . , xn}\{y1, . . . , ym} the parametric set of B. We assume U < y1 < y2 < · · · < ym . A polynomial 
f is said to be invertible w.r.t. B if ( f , B1, . . . , Bs) ∩ F [U ] �= {0} where lvar( f ) = lvar(Bs). We call B
a regular chain if for each i > 1, the initial of Bi is invertible w.r.t. B1, . . . , Bi−1. For a regular chain B, 
we say that f is invertible w.r.t. asat(B) if ( f , asat(B)) ∩F [U ] �= {0}. The next two lemmas give basic 
properties of regular chains which will be used later.

Lemma 4. Let B be a regular chain in F [x1, . . . , xn]. If √asat(B) =⋂m
i=1 Pi is an irredundant prime decom-

position of 
√

asat(B), then a polynomial f is invertible w.r.t. asat(B) if and only if f /∈Pi for all i = 1, . . . , m.

Proof. Since 
√

asat(B) =⋂m
i=1 Pi is an irredundant prime decomposition of 

√
asat(B), U is a para-

metric set of Pi for each i by Gao and Chou (1993). And for prime ideals Pi , f /∈ Pi if and only if 
( f , Pi) ∩F [U ] �= {0}. If f is invertible w.r.t. asat(B), {0} �= ( f , asat(B)) ∩F [U ] ⊂ ( f , Pi) ∩F [U ]. Thus, 
f /∈ Pi for each i. For the other side, suppose f /∈ Pi for all i, then there exist nonzero polynomials 
hi(U ) such that hi(U ) ∈ ( f , Pi). Thus, there exists t ∈ N such that (

∏m
i=1 hi(U ))t ∈ ( f , asat(B)). So f

is invertible w.r.t. asat(B). �
Lemma 5. (See Bouziane et al., 2001.) Let B be a regular chain in F [x1, . . . , xn] and U the parametric set of B. 
Let f ∈F [x1, . . . , xn] and L in F [U ]\{0} such that L f ∈ (B). Then f ∈ asat(B).

Lemma 6. Let A be an irreducible difference polynomial in F{Y} with deg(A, yi0) > 0 for some i0. If f
is invertible w.r.t. A[k] = A, A(1), . . . , A(k) under some ranking R , then σ( f ) is invertible w.r.t. A[k+1] . In 
particular, A[k] is a regular chain for any k ≥ 0.

Proof. Suppose ld(A) = y(s)
l . Let U = Θ(Y)\{y(k)

l | k ≥ s}. Two cases will be considered.

i) f ∈ F [U ]. If σ( f ) ∈ F [U ], it is trivial. Otherwise, deg(σ ( f ), y(s)
l ) > 0. Let R be the resultant of 

σ( f ) and A w.r.t. y(s)
l . Then R �= 0, for if not, A divides σ( f ), a contradiction to deg(A, yi0 ) > 0. So 

(σ ( f ), A) ∩F [U ] �= {0} and σ( f ) is invertible w.r.t. A[k+1] .
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ii) f /∈F [U ]. Since f is invertible w.r.t. A[k] , there exist 0 �= h(U ) ∈F [U ] such that h(U ) ∈ ( f , A[k]). 
So σ(h(U )) ∈ (σ ( f ), A[k+1]). By i), σ(h(U )) is invertible w.r.t. A[k+1] . So σ( f ) is also invertible w.r.t. 
A[k+1] .

Since IA is invertible w.r.t. A, it follows that A[k] is a regular chain. �
The following result is crucial to define sparse difference resultant.

Theorem 7. Let I be a reflexive prime difference ideal of codimension one in F{Y}. The first element in any 
characteristic set of I w.r.t. any ranking, when taken irreducible, is unique up to a factor in F .

Proof. Write any ascending chain in form (1). Let A = A11, . . . , A1m be a characteristic set of I w.r.t. 
some ranking R with A11 irreducible. Suppose lvar(A1i) = y1. Given another characteristic set B =
B11, . . . , B1l of I w.r.t. some other ranking R ′ (B11 is irreducible), we need to show that there exists 
c ∈F such that B11 = c · A11. If lvar(B11) = y1, B11 and A11 should have the same orders in y1. Since 
both of them are irreducible polynomials, B11 = c · A11 for some c ∈F follows. So it suffices to prove 
the case lvar(B11) �= y1. Suppose lvar(B11) = y2. Clearly, a transform of y2 appears effectively in A11
for B reduces A11 to 0. And since I is reflexive, there exists some i0 such that deg(A11, yi0) > 0.

Suppose ord(A11, y2) = o2. Take another ranking under which y(o2)
2 is the leader of A11 and we 

use Ã11 to distinguish it from the A11 under R . By Lemma 6, for each k, A[k]
11 and Ã[k]

11 are regular 
chains.

Now we claim that asat(A[k]
11 ) = asat( Ã[k]

11 ) for each k. On the one hand, for any polynomial 
f ∈ asat(A[k]

11 ), we have (
∏k

i=0 σ i(IA11 ))
a f ∈ (A[k]

11 ). Since IA11 is invertible w.r.t. Ã11, by Lemma 6, 
(
∏k

i=0 σ i(IA11 ))
a is invertible w.r.t. Ã[k]

11 . Denote the parameters of Ã[k]
11 by Ũ . So there exists a 

nonzero polynomial h(Ũ ) such that h(Ũ ) ∈ ((
∏k

i=0 σ i(IA11 ))
a, ̃A[k]

11 ). Thus, h(Ũ ) f ∈ ( Ã[k]
11 ). Since Ã[k]

11

is a regular chain, by Lemma 5, f ∈ asat( Ã[k]
11 ). So asat(A[k]

11 ) ⊆ asat( Ã[k]
11 ). Similarly, we can show that 

asat( Ã[k]
11 ) ⊆ asat(A[k]

11 ). Thus, asat(A[k]
11 ) = asat( Ã[k]

11 ).
Suppose ord(B11, y2) = o′

2. Clearly, o2 ≥ o′
2. We now proceed to show that it is impossible 

for o2 > o′
2. Suppose the contrary, i.e. o2 > o′

2. Then B11 is invertible w.r.t. asat( Ã[k]
11 ). Suppose √

asat( Ã[k]
11 ) =⋂t

i=1 Pi is an irredundant prime decomposition. By Lemma 4, B11 /∈Pi for each i. Since 

asat(A[k]
11 ) = asat( Ã[k]

11 ), using Lemma 4 again, B11 is invertible w.r.t. asat(A[k]
11 ). Thus, there exists a 

nonzero difference polynomial H with ord(H, y1) < ord(A11, y1) such that H ∈ (B11, asat(A[k]
11 )) ⊂ I , 

which is a contradiction. Thus, o2 = o′
2. Since B reduces A11 to zero and A11 is irreducible, there 

exists c ∈F such that B11 = c · A11. �
3. Sparse difference resultants

In this section, the concepts of Laurent difference polynomial and Laurent transformally essential 
system are first introduced, and then the sparse difference resultant for Laurent transformally es-
sential systems is defined. A criterion for a Laurent polynomial system to be Laurent transformally 
essential in terms of the support of the given system is also given.

3.1. Laurent difference polynomials

Let F be an ordinary difference field with a transforming operator σ and F{Y} the ring of differ-
ence polynomials in the difference indeterminates Y = {y1, . . . , yn}. Before defining sparse difference 
resultants, we first introduce the concept of Laurent difference polynomial.

Definition 8. A Laurent difference monomial of order s is a Laurent monomial in variables Y[s] =
(y(k)

i )1≤i≤n;0≤k≤s . More precisely, it has the form 
∏n

i=1
∏s

k=0(y(k)
i )mik where mik are integers which can 

be negative. A Laurent difference polynomial over F is a finite linear combination of Laurent difference 
monomials with coefficients in F .
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Clearly, the collection of all Laurent difference polynomials forms a commutative difference ring 
under the obvious sum, product, and the usual transforming operator σ , where all Laurent differ-
ence monomials are invertible. We denote the difference ring of Laurent difference polynomials with 
coefficients in F by F{y1, y−1

1 , . . . , yn, y−1
n }, or simply by F{Y±}.

Definition 9. For each Laurent difference polynomial F ∈ F{Y±}, there exists a unique Laurent dif-
ference monomial M such that 1) M · F ∈ F{Y} and 2) for any Laurent difference monomial T with 
T · F ∈F{Y}, T · F is divisible by M · F as polynomials. This M · F is defined to be the normal form of F , 
denoted by N(F ). The order and degree of N(F ) is defined to be the order and degree of F , denoted 
by ord(F ) and deg(F ).

In the following, we consider zeros for Laurent difference polynomials.

Definition 10. Let F be a Laurent difference polynomial in F{Y±}. An n-tuple (a1, . . . , an) over F
with each ai �= 0 is said to be a nonzero difference solution of F if F (a1, . . . , an) = 0.

For an ideal I ⊂F{Y±}, the difference zero set of I is the set of common nonzero difference zeros 
of all Laurent difference polynomials in I . We will see later in Example 40, how nonzero difference 
solutions are naturally related with the sparse difference resultant.

3.2. Definition of sparse difference resultants

In this section, the definition of the sparse difference resultant will be given. Similar to the study 
of sparse resultants and sparse differential resultants, we first define sparse difference resultants for 
Laurent difference polynomials whose coefficients are difference indeterminates. Then the sparse dif-
ference resultant for a given Laurent difference polynomial system with concrete coefficients is the 
value that the generic resultant takes for the coefficients of the given system.

Suppose Ai = {Mi0, Mi1, . . . , Mili } (i = 0, 1, . . . , n) are finite sets of Laurent difference monomials 
in Y. Consider n + 1 generic Laurent difference polynomials defined over A0, . . . , An:

Pi =
li∑

k=0

uik Mik (i = 0, . . . ,n), (2)

where all the uik are transformally independent over the rational number field Q. Denote

ui = (ui0, ui1, . . . , uili ), i = 0, . . . ,n, and u =
n⋃

i=0

ui\{ui0}. (3)

The number li + 1 is called the size of Pi and Ai is called the support of Pi . To avoid the triviality, 
li ≥ 1 (i = 0, . . . , n) are always assumed in this paper.

Definition 11. A set of Laurent difference polynomials of the form (2) is called Laurent transformally 
essential if there exist ki (i = 0, . . . , n) with 1 ≤ ki ≤ li such that σ . tr . degQ

〈M0k0
M00

, 
M1k1
M10

, . . . , Mnkn
Mn0

〉
/

Q = n. In this case, we also say that A0, . . . , An form a Laurent transformally essential system.

Although Mi0 are used as denominators to define transformally essential systems, the following 
lemma shows that the definition does not depend on the choices of Mi0.

Lemma 12. The following two conditions are equivalent.

(1) There exist ki satisfying 1 ≤ ki ≤ li for i = 0, . . . , n such that σ . tr . degQ
〈M0k0

M , . . . , Mnkn
M

〉
/Q = n.
00 n0
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(2) There exist pairs (ki, ji) (i = 0, . . . , n) with ki �= ji ∈ {0, . . . , li} such that σ . tr . degQ
〈M0k0

M0 j0
, . . . , Mnkn

Mnjn

〉
/

Q = n.

Proof. It is trivial that 1) implies 2). For the other direction, assume 2) holds. Without loss of general-

ity, suppose 
M1k1
M1 j1

, . . . , Mnkn
Mnjn

are transformally independent over Q. We need to show 1) holds. Suppose 

the contrary, then for any mi ∈ {1, . . . , li}, M1m1
M10

, . . . , Mnmn
Mn0

are transformally dependent over Q. Now 
we claim that (∗) suppose for each i ∈ {1, 2}, a and bi are transformally dependent over Q, then a
and b1/b2 are transformally dependent over Q. Indeed, if a is transformally algebraic over Q, then (∗)

follows. If a is transformally transcendental over Q, then each bi is transformally algebraic over Q〈a〉. 
Thus, b1/b2 is transformally algebraic over Q〈a〉 (Levin, 2008, p. 245) and the claim is proved. Since 
Miki
Miji

= Miki
Mi0

/
Miji
Mi0

, by claim (∗), 
Miki
Miji

(i = 1, . . . , n) are transformally dependent over Q, which leads to 
a contradiction. �

Let m be the set of all difference monomials in Y. Let

IY,u = ([
N(P0), . . . ,N(Pn)

] : m)
Q{Y,u0,...,un}, (4)

Iu = IY,u ∩Q{u0, . . . ,un}. (5)

The following result is a foundation for defining sparse difference resultants.

Theorem 13. Let P0, . . . , Pn be the Laurent difference polynomials defined in (2). Then the following assertions 
hold.

(1) IY,u is a reflexive prime difference ideal in Q{Y, u0, . . . , un}.
(2) Iu is of codimension one if and only if P0, . . . , Pn form a Laurent transformally essential system.

Proof. Let η = (η1, . . . , ηn) be a sequence of transformally independent elements over Q〈u〉, where u
is defined in (3). Let

ζi = −
li∑

k=1

uik
Mik(η)

Mi0(η)
(i = 0,1, . . . ,n). (6)

We claim that θ = (η; ζ0, u01, . . . , u0l0 ; . . . ; ζn, un1, . . . , unln ) is a generic zero of IY,u , which implies 
that IY,u is a reflexive prime difference ideal.

Clearly, each N(Pi) vanishes at θ . For any f ∈ IY,u , there exists an M ∈ m such that M f ∈
[N(P0), . . . , N(Pn)], so f (θ) = 0 follows. Conversely, let f be any difference polynomial in Q{Y, u0,

. . . , un} satisfying f (θ) = 0. Clearly, N(P0), N(P1), . . . , N(Pn) constitute an ascending chain with 
ui0 as leaders. Let f1 be the difference remainder of f w.r.t. this ascending chain. Then f1
is free from ui0 (i = 0, . . . , n) and there exist a, s ∈ N such that (

∏n
i=0

∏s
l=0(σ

l(IN(Pi))))
a · f ≡

f1, mod[N(P0), . . . , N(Pn)]. Clearly, f1(θ) = 0. Since f1 ∈ Q{Y, u}, f1 = 0. Thus, f ∈ IY,u . So IY,u is a 
reflexive prime difference ideal with a generic zero θ .

Consequently, Iu = IY,u ∩ Q{u0, . . . , un} is a reflexive prime difference ideal with a generic zero 
ζ = (ζ0, u01, . . . , u0l0 ; . . . ; ζn, un1, . . . , unln ). From (6), it is clear that σ . tr . degQ〈ζ 〉/Q ≤ ∑n

i=0 li + n. 
If there exist pairs (ik, jk) (k = 1, . . . , n) with 1 ≤ jk ≤ lik and ik1 �= ik2 (k1 �= k2) such that 
Mi1 j1
Mi10

, . . . , Min jn
Min0

are transformally independent over Q, then by Lemma 2, ζi1 , . . . , ζin are transformally 

independent over Q〈u〉. It follows that σ . tr . degQ〈ζ 〉/Q =∑n
i=0 li + n. Thus, Iu is of codimension 1.

Conversely, let us assume that Iu is of codimension 1. That is, σ . tr . degQ〈ζ 〉/Q = ∑n
i=0 li + n. 

We want to show that there exist pairs (ik, jk) (k = 1, . . . , n) with 1 ≤ jk ≤ lik and ik1 �= ik2

(k1 �= k2) such that Mi1 j1
Mi10

, . . . , Min jn
Min0

are transformally independent over Q. Suppose the contrary, i.e., 
Mi1 j1 (η)

M (η)
, . . . , Min jn (η)

M (η)
are transformally dependent for any n different ik and jk ∈ {1, . . . , lik }. Since 
i10 in0
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each ζik is a linear combination of 
Mik jk

(η)

Mik 0(η)
( jk = 1, . . . , lik ), it follows that ζi1 , . . . , ζin are transfor-

mally dependent over Q〈u〉. Thus, we have σ . tr . degQ〈ζ 〉/Q <
∑n

i=0 li + n, a contradiction to the 
hypothesis. �

Let [P0, . . . , Pn] be the difference ideal in Q{Y±; u0, . . . , un} generated by Pi . Then we have

Corollary 14. [P0, . . . , Pn] ∩ Q{u0, . . . , un} = Iu . The reflexive prime difference ideal [P0, . . . , Pn] ∩
Q{u0, . . . , un} is of codimension one if and only if {Pi : i = 0, . . . , n} is a Laurent transformally essential 
system.

Proof. It is easy to show that [P0, . . . , Pn] ∩Q{u0, . . . , un} = IY,u ∩Q{u0, . . . , un} = Iu . And the result 
is a direct consequence of Theorem 13. �

Now suppose {P0, . . . , Pn} is a Laurent transformally essential system. Since Iu defined in (5) is a 
reflexive prime difference ideal of codimension one, by Theorem 7, there exists a unique irreducible 
difference polynomial R(u; u00, . . . , un0) = R(u0, . . . , un) ∈ Q{u0, . . . , un} such that R can serve as the 
first polynomial in each characteristic set of Iu w.r.t. any ranking endowed on u0, . . . , un . That is, if 
uij appears in R, then among all the difference polynomials in Iu , R is of minimal order in uij and of 
minimal degree in the maximal transform of uij .

Now the definition of the sparse difference resultant is given as follows:

Definition 15. The above R(u0, . . . , un) ∈ Q{u0, . . . , un} is defined to be the sparse difference resultant
of the Laurent transformally essential system P0, . . . , Pn , denoted by ResA0,...,An or Res(P0, . . . ,Pn).

The following lemma gives another description of the sparse difference resultant from the perspec-
tive of generic zeros.

Lemma 16. Let ζi = − 
∑li

k=1 uik
Mik(η)
Mi0(η)

(i = 0, 1, . . . , n) be defined as in Eq. (6), where η = (η1, . . . , ηn) is 
a generic zero of [0]Q〈u〉{Y}. Then, among all the polynomials in Q{u0, . . . , un} vanishing at (u; ζ0, . . . , ζn), 
R(u0, . . . , un) = R(u; u00, . . . , un0) is of minimal order in each ui0 and of minimal degree in the maximal 
transform of ui0 .

Proof. It is a direct consequence of Theorem 13 and Definition 15. �
Remark 17. From its definition, the sparse difference resultant can be computed as follows. With the 
characteristic set method given in Gao et al. (2009), we can compute a proper irreducible ascending 
chain A which is a characteristic set for the difference polynomial system {P0, P1, . . . , Pn} under a 
ranking such that uij < yk . Then the first difference polynomial in A is the sparse difference resultant. 
This algorithm does not have a complexity analysis. In Section 5, we will give a single exponential 
algorithm to compute the sparse difference resultant.

We give several examples which will be used throughout the paper.

Example 18. Let n = 1 and P0 = u00 + u01 y2
1, P1 = u10 y(1)

1 + u11 y1. Clearly, P0, P1 are Laurent trans-
formally essential. The sparse difference resultant of P0, P1 is

R = u2
10u01u(1)

00 − u2
11u00u(1)

01 .

Example 19. Let n = 2 and the Pi have the form

Pi = ui0 y(2)
1 + ui1 y(3)

1 + ui2 y(3)
2 (i = 0,1,2).
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It is easy to show that y(3)
1 /y(2)

1 and y(3)
2 /y(2)

1 are transformally independent over Q. Thus, P0, P1, P2
form a Laurent transformally essential system. The sparse difference resultant is

R = Res(P0,P1,P2) =
∣∣∣∣∣∣

u00 u01 u02
u10 u11 u12
u20 u21 u22

∣∣∣∣∣∣ .
The following example shows that for a Laurent transformally essential system, its sparse differ-

ence resultant may not involve the coefficients of some Pi .

Example 20. Let n = 2 and the Pi have the form

P0 = u00 + u01 y1 y2, P1 = u10 + u11 y(1)
1 y(1)

2 , P2 = u20 + u21 y2.

Clearly, P0, P1, P2 form a Laurent transformally essential system. The sparse difference resultant of 
P0, P1, P2 is

R = u(1)
00 u11 − u(1)

01 u10,

which is free from the coefficients of P2.

Example 20 can be used to illustrate the difference between the differential and difference 
cases. If P0, P1, P2 in Example 20 are differential polynomials, then the sparse differential 
resultant is u2

01u10u2
20u2

21 − u01u′
00u11u20u2

21u′
20 + u00u′

01u11u20u2
21u′

20 + u01u00u11u2
20 (u′

21)
2 +

u00u01u11u2
21(u′

20)
2 − 2u01u00u11u20u21u′

20u′
21 + u01u′

00u11u2
20u′

21u21 − u00u′
01u11 u21u′

21u2
20 which 

contains all the coefficients of P0, P1, P2.

Remark 21. When all the Ai (i = 0, . . . , n) are sets of difference monomials, unless explicitly men-
tioned, we always consider Pi as Laurent difference polynomials. But when we regard Pi as difference 
polynomials, ResA0,...,An is also called the sparse difference resultant of the difference polynomials 
Pi and we call Pi a transformally essential system. In this paper, sometimes we regard Pi as difference 
polynomials where it will be indicated.

We now define sparse difference resultants for specific Laurent difference polynomials over Laurent 
transformally essential systems. For any finite set A = {M0, . . . , Ml} of Laurent difference monomials 
in Y and a difference extension field E of Q, we use

LE (A) =
{

l∑
i=0

ai Mi

}
(7)

to denote the set of all Laurent difference polynomials with support A, where ai ∈ E .

Definition 22. Let Ai = {Mi0, Mi1, . . . , Mili } (i = 0, 1, . . . , n) be a Laurent transformally essential 
system. Consider n + 1 Laurent difference polynomials (F0, F1, . . . , Fn) ∈ ∏n

i=0 LE (Ai). The sparse 
difference resultant of F0, . . . , Fn , denoted as Res(F0, . . . , Fn), is obtained by replacing ui with the 
corresponding coefficient vector of Fi in ResA0,...,An .

A major unsolved problem about difference resultant is whether R defined above contains all the 
information about the elimination ideal Iu defined in (5). More precisely, we propose the following 
problem.

Problem 23. As shown by Example 3, the characteristic set for a reflexive prime difference ideal of 
codimension one could contain more than one elements. Let Iu be the ideal defined in (5). Then Iu
is a reflexive prime difference ideal of codimension one and
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Iu = IY,u ∩Q{u0, . . . ,un} = sat(R, R1, . . . , Rm), (8)

where R is the sparse difference resultant of {P0, . . . , Pn} and R, R1, . . . , Rm is a characteristic set 
of Iu . We conjecture that m = 0, or equivalently Iu = sat(R). If this is valid, then better properties 
can be shown for sparse difference resultants as we will explain later. It is easy to check that for 
Examples 18, 19, and 20, Iu = sat(R).

3.3. A criterion for Laurent transformally essential system in terms of supports

Let Ai (i = 0, . . . , n) be finite sets of Laurent difference monomials. According to Definition 11, in 
order to check whether they form a Laurent transformally essential system, we need to check whether 
there exist Miki , Miji ∈Ai (i = 0, . . . , n) such that σ . tr . degQ〈M0k0/M0 j0 , . . . , Mnkn /Mnjn 〉/Q = n. This 
can be done with the difference characteristic set method given in Gao et al. (2009). In this section, 
a criterion will be given to check whether a Laurent difference system is transformally essential in 
terms of their supports, which is conceptually and computationally simpler than the naive approach 
based on the difference characteristic set method.

Let Bi =∏n
j=1

∏s
k=0(y(k)

j )ti jk (i = 1, . . . , m) be m Laurent difference monomials. We now introduce 
a new algebraic indeterminate x and let

dij =
s∑

k=1

ti jkxk (i = 1, . . . ,m, j = 1, . . . ,n)

be univariate polynomials in Z[x]. If ord(Bi, y j) = −∞, then set dij = 0. The vector (di1, di2, . . . , din)

is called the symbolic support vector of Bi . The matrix D = (dij)m×n is called the symbolic support matrix
of B1, . . . , Bm .

Note that there is a one-to-one correspondence between Laurent difference monomials and their 
symbolic support vectors, so we will not distinguish these two concepts if there is no confusion. The 
same is true for a set of Laurent difference monomials and its symbolic support matrix.

Definition 24. A matrix D = (dij)m×n over Q[x] is called normal upper-triangular of rank r if for each 
i ≤ r, dii �= 0 and di,i−k = 0 (1 ≤ k ≤ i − 1), and the last m − r rows are zero vectors.

Definition 25. A generalized Laurent difference monomial is a monomial of the form 
∏n

j=1
∏s

k=0(y(k)
j )t jk

where t jk ∈ Q. A set of generalized Laurent difference monomials B1, B2, . . . , Bm is said to be in 
r-upper-triangular form if its symbolic support matrix D ∈ Q[x]m×n is a normal upper triangular matrix 
of rank r.

The following lemma shows that it is easy to compute the difference transcendence degree of a 
set of Laurent difference monomials in upper-triangular form.

Lemma 26. Let B1, . . . , Bm be a set of generalized Laurent difference monomials in r-upper-triangular form. 
Then σ . tr . degQ〈B1, . . . , Bm〉/Q = r.

Proof. From the structure of the symbolic support matrix, Bi =∏n
j=i

∏
k≥0(y(k)

j )ti jk (i = 1, . . . , r) with 

ord(Bi, yi) ≥ 0 and Br+1 = · · · = Bm = 1. Let B ′
i =∏r

j=i

∏
k≥0(y(k)

j )ti jk and Q1 = Q〈yr+1, . . . , yn〉. Then 
σ . tr . degQ〈B1, . . . , Bm〉/Q = σ . tr . degQ〈B1, . . . , Br〉/Q ≥ σ . tr . degQ1〈B1, . . . , Br〉/Q1 =
σ . tr . degQ〈B ′

1, . . . , B
′
r〉/Q. So it suffices to show that σ . tr . degQ〈B ′

1, . . . , B
′
r〉/Q = r.

If r = 1, ord(B ′
1, y1) ≥ 0 implies that σ . tr . degQ〈B ′

1〉/Q = 1. Suppose we have proved for the case 
r −1. Let B ′′

i =∏r−1
j=i

∏
k≥0(y(k)

j )dijk , then by the hypothesis, σ . tr . degQ〈B ′′
1, . . . , B ′′

r−1〉/Q = r −1. Since 
B ′

r ∈ Q〈yr〉, r ≥ σ . tr . degQ〈B ′
1, . . . , B

′
r〉/Q = σ . tr . degQ〈B ′

1, . . . , B
′
r〉/Q〈B ′

r〉 + σ . tr . degQ〈B ′
r〉/Q ≥

σ . tr . degQ〈yr〉〈B ′
1, . . . , B

′
r−1〉/Q〈yr〉 +1 = σ . tr . degQ〈B ′′

1, . . . , B ′′
r−1〉/Q + 1 = r. So σ . tr . degQ〈B1,

. . . , Bm〉/Q = r. �
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In the following, we will show that each set of generalized Laurent difference monomials can 
be transformed to an upper-triangular set with the same transformal transcendence degree. For a 
matrix D over Q[x], we use two types of elementary row operations and one type of elementary 
column operation on D, namely,

• interchanging two rows of D;
• adding an f (x)-multiple of the j-th row to the i-th row, where f (x) ∈Q[x] and i �= j;
• interchanging two columns of D.

Lemma 27. Each matrix D ∈ Q[x]m×n can be reduced to a normal upper-triangular matrix by performing a 
finite succession of the above three types of elementary operations.

Proof. Since Q[x] is an Euclidean domain, it follows by Hoffman and Kunze (1971, p. 253). �
Theorem 28. Let B1, . . . , Bm be a set of Laurent difference monomials with symbolic support matrix D. Then 
σ . tr . degQ〈B1, . . . , Bm〉/Q = rk(D).

Proof. First, we show that the above three types of elementary operations of D correspond to cer-
tain transformations of B1, . . . , Bm . Indeed, interchanging the i-th and the j-th rows of D means 
interchanging Bi and B j , and interchanging the i-th and the j-th columns of D means interchanging 
yi and y j in B1, . . . , Bm (or in the variable order). Multiplying the i-th row of D by a polynomial 
f (x) = adxd + ad−1xd−1 + · · · + a0 ∈ Q[x] and adding the result to the j-th row means changing B j to ∏d

k=0(σ
k(Bi))

ak B j .
So by Lemma 27, B1, . . . , Bm can be transformed to an upper-triangular set C1, . . . , Cm by just 

performing a finite succession of the above three types of elementary operations. If we can show that 
the above elementary matrix operations keep transformal transcendence degree, then by Lemma 26, 
the theorem follows. It is trivial for row or column interchanging operations. So it suffices to show 
that given 

∑d
k=0 ai xk ∈ Q[x]∗ , σ . tr . degQ〈B1, B2〉/Q = σ . tr . degQ〈B1, 

∏d
k=0(σ

k(B1))
ak B2〉/Q. It can 

easily be proved, for we have σ . tr . degQ〈B1〉/Q = σ . tr . degQ〈∏d
k=0(σ

k(B1))
ak 〉/Q. �

Example 29. Let B1 = y1 y2 and B2 = y(a)
1 y(b)

2 . Then the symbolic support matrix of B1 and B2 is 
D = ( 1 1

xa xb

)
. Then rk(D) =

{
1 if a=b
2 if a �=b

. Thus, by Theorem 28, if a �= b, B1 and B2 are transformally inde-

pendent over Q. Otherwise, they are transformally dependent over Q.

We now extend Theorem 28 to generic difference polynomials in (2). Let I ⊆ {0, . . . , n} and for any 
i ∈ I , let βik be the symbolic support vector of Mik/Mi0. Then the vector

wi =
li∑

k=0

uikβik

is called the symbolic support vector of Pi and the matrix DI whose rows are wi for i ∈ I is called the 
symbolic support matrix of Pi (i ∈ I). Then we have the following lemma.

Lemma 30. σ . tr . degQ〈⋃i∈I ui〉〈Pi/Mi0 : i ∈ I〉/Q〈⋃i∈I ui〉 = rk(DI ).

Proof. By Lemma 2, σ . tr . degQ〈⋃i∈I ui〉〈Pi/Mi0 : i ∈ I〉/Q〈⋃i∈I ui〉 is no less than the maximal trans-
formal transcendence degree of Miki /Mi0 over Q.

On the other hand, the transformal transcendence degree will not increase by linear combinations, 
for given arbitrary ai and ā1, σ . tr . degQ〈λ〉〈a1 + λā1, a2, . . . , ak〉/Q〈λ〉 ≤ max(σ . tr . degQ〈a1, a2 . . . ,

ak〉/Q, σ . tr . degQ〈ā1, a2, . . . , ak〉/Q). So the transformal transcendence degree of Pi/Mi0 (i ∈ I) over 
Q〈⋃i∈I ui〉 is no greater than the maximal transformal transcendence degree of Miki /Mi0 (i ∈ I).
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Thus, by Theorem 28, we have σ . tr . degQ〈⋃i∈I ui〉〈Pi/Mi0 : i ∈ I〉/Q〈⋃i∈I ui〉 =
maxki σ . tr . degQ〈Miki /Mi0 : i ∈ I〉/Q = maxki rk(Dki ,i∈I ), where Dki ,i∈I is the symbolic support ma-
trix of Miki /Mi0. Denote the submatrix of DI with rows corresponding to Pi1/Mi10, . . . , Pir /Mir 0

and columns corresponding to y j1 , . . . , y jr by DI
( i1...ir

j1... jr

)
. Then det

(
DI
( i1...ir

j1... jr

)) = ∑
ki

∏r
j=1 ui jk j ×

det
(
Dki ,i∈I

( i1...ir
j1... jr

))
, which implies that rk(DI ) = maxki rk(Dki ,i∈I ). Thus, the lemma follows. �

Now, we have the following criterion for Laurent transformally essential system.

Theorem 31. Consider the set of generic Laurent difference polynomials defined in (2). The following three 
conditions are equivalent.

(1) P0, . . . , Pn form a Laurent transformally essential system.
(2) There exist Miki (i = 0, . . . , n) with 1 ≤ ki ≤ li such that the symbolic support matrix of M0k0/M00, . . . ,

Mnkn /Mn0 is of rank n.
(3) The symbolic support matrix DP of P0, . . . , Pn is of full rank, that is, rk(DP) = n.

Proof. The equivalence of 1) and 2) is a direct consequence of Theorem 28 and Definition 11. The 
equivalence of 1) and 3) follows from Lemma 30. �

Both Theorems 28 and 31 can be used to check whether a system is transformally essential.

Example 32. In Example 20, let B0 = M01/M00 = y1 y2, B1 = M11/M10 = y(1)
1 y(1)

2 , and B2 =
M21/M20 = y2. Then the symbolic support matrix for {B0, B2} is D = ( 1 1

0 1

)
. We have rk(D) = 2 and by 

Theorem 28, the system P = {P0, P1, P2} is transformally essential. Also, the symbolic support matrix 

for P is DP =
( u01 u01

u11x u11x
0 u21

)
. We have rk(DP) = 2 and by Theorem 31, P is transformally essential.

We end this section by introducing a new concept, namely super-essential systems, through which 
one can identify certain Pi whose coefficients will not occur in the sparse difference resultant. This 
will lead to the simplification in the computation of the resultant. Let I ⊂ {0, 1, . . . , n}. We denote 
by PI the Laurent difference polynomial set consisting of Pi (i ∈ I), and DPI its symbolic support 
matrix. For a subset I ⊂ {0, 1, . . . , n}, if |I| = rk(DPI ), then PI , or {Ai : i ∈ I}, is said to be transformally 
independent.

Definition 33. Let I ⊂ {0, 1, . . . , n}. We call I or PI super-essential if |I| − rk(DPI ) = 1 and for each 
proper subset J � I , | J | = rk(DP J ).

Note that super-essential systems are the difference analogue of essential systems introduced in 
Sturmfels (1994) and also that of rank essential systems introduced in Li et al. (2012). Using this 
definition, we have the following property, which is similar to Corollary 1.1 in Sturmfels (1994).

Theorem 34. If {P0, . . . , Pn} is a Laurent transformally essential system, then for any I ⊂ {0, 1, . . . , n}, 
|I| − rk(DPI ) ≤ 1 and there exists a unique I which is super-essential. If I is super-essential, then the sparse 
difference resultant of P0, . . . , Pn involves only the coefficients of Pi (i ∈ I).

Proof. Since n = rk(DP) ≤ rk(DPI ) + |P| − |PI | = n + 1 + rk(DPI ) − |I|, we have |I| − rk(DPI ) ≤ 1. 
Since |I| − rk(DPI ) ≥ 0, for any I , either |I| − rk(DPI ) = 0 or |I| − rk(DPI ) = 1. Using the fact that 
|{0, 1, . . . , n}| − rk(DP) = n, it is easy to check the existence of a rank essential set I . For the unique-
ness, we assume that there exist two subsets I1, I2 ⊂ {1, . . . , m} which are super-essential. Then, we 
have rk(DPI ∪I ) ≤ rk(DPI ) + rk(DPI ) − rk(DPI ∩I ) = |I1 ∪ I2| − 2, a contradiction.
1 2 1 2 1 2
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Let I be a super-essential set. Similar to the proof of Theorem 13, it is easy to show that [Pi]i∈I ∩
Q{ui}i∈I is of codimension one, which means that the sparse difference resultant of P0, . . . , Pn only 
involves the coefficients of Pi (i ∈ I). �
4. Basic properties of sparse difference resultants

In this section, we will prove some basic properties for the sparse difference resultant.

4.1. Transformal homogeneity and the action of the transforming operator

We first introduce the concept of transformally homogeneous polynomials.

Definition 35. A difference polynomial f ∈ F{y0, . . . , yn} is called transformally homogeneous if 
for a new difference indeterminate λ, there exists a difference monomial M(λ) in λ such that 
f (λy0, . . . , λyn) = M(λ) f (y0, . . . , yn).

The difference analogue of Euler’s criterion for homogeneous polynomials is valid.

Lemma 36. f ∈ F{y0, y1, . . . , yn} is transformally homogeneous if and only if for each r ∈ N0 , there exists 
mr ∈N0 such that

n∑
i=0

y(r)
i

∂ f (y0, . . . , yn)

∂ y(r)
i

= mr f .

That is, f is transformally homogeneous if and only if f is homogeneous in {y(r)
1 , . . . , y(r)

n } for each r ∈ N0 .

Proof. “
⇒” Denote Y = (y0, . . . , yn) temporarily. Suppose f is transformally homogeneous. That 
is, there exists a difference monomial M(λ) = ∏r0

r=0(λ
(r))mr such that f (λY) = M(λ) f (Y). Then ∑n

i=0 y(r)
i

∂ f

∂ y(r)
i

(λY) =∑n
i=0

∂ f

∂ y(r)
i

(λY)
∂(λyi )

(r)

∂λ(r) = ∂ f (λY)

∂λ(r) = ∂M(λ) f (Y)

∂λ(r) = mr M(λ)

λ(r) f (Y). Substitute λ = 1 into 

the above equality, 
∑n

i=0 y(r)
i

∂ f

∂ y(r)
j

= mr f follows.

“⇐
” Suppose ord( f , Y) = r0. Then for each r ≤ r0, λ(r) ∂ f (λY)

∂λ(r) = λ(r)∑n
i=0 y(r)

i
∂ f

∂ y(r)
i

(λY) =∑n
i=0(λyi)

(r) ∂ f

∂ y(r)
i

(λY) = mr f (λY). So f (λY) is homogeneous of degree mr in λ(r) . Thus, f (λY) =
f (λy0, . . . , λyn; λ(1) y(1)

0 , . . . , λ(1) y(1)
n ; . . . ; λ(r0) y(r0)

0 , . . . , λ(r0) y(r0)
n ) = ∏r0

r=0(λ
(r))mr f (Y). Thus, f is

transformally homogeneous. �
Theorem 37. The sparse difference resultant is transformally homogeneous in each ui which is the coefficient 
set of Pi .

Proof. Suppose ord(R, ui) = hi ≥ 0. Follow the notations used in Theorem 13. By Lemma 16, 
R(u; ζ0, . . . , ζn) = 0. Differentiating this identity w.r.t. u(k)

i j ( j = 1, . . . , li) respectively, due to (6) we 
have

∂R

∂u(k)
i j

+ ∂R

∂u(k)
i0

(
− Mij(η)

Mi0(η)

)(k)

= 0. (9)

In the above equations, ∂R
∂u(k)

i j

(k = 0, . . . , hi; j = 0, . . . , li) are obtained by replacing ui0 by ζi (i = 0,

1, . . . , n) in each ∂R
∂u(k) respectively.
i j
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Multiplying (9) by u(k)
i j and for j from 1 to li , adding them together, we get ζ

(k)
i

∂R
∂u(k)

i0

+∑li
j=1 u(k)

i j
∂R

∂u(k)
i j

= 0. So the difference polynomial fk = ∑li
j=0 u(k)

i j
∂R

∂u(k)
i j

vanishes at (ζ0, . . . , ζn). Since 

ord( fk, ui0) ≤ ord(R, ui0) and deg( fk) = deg(R), by Lemma 16, there exists an mk ∈ Z such that 
fk = mkR. Thus, by Lemma 36, R is transformally homogeneous in ui . �

The following result shows that if we regard Res as a map from Laurent difference polynomial 
systems to their sparse difference resultants, it satisfies Res ◦σ = σ ◦ Res.

Theorem 38. Let P0, . . . , Pn be a Laurent transformally essential system as defined in (2). Then Res(σ (P0), . . . ,
σ (Pn)) = σ(Res(P0, . . . , Pn)).

Proof. Since Pi = ∑n
k=0 uik Mik , σ(Pi) = ∑n

k=0 σ(uik)σ (Mik). Clearly, σ(Pi) is a generic sparse 
Laurent difference polynomial with coefficient vector σ(ui) = (σ (ui0), . . . , σ(uili )). Denote Pσ =
{σ(P0), . . . , σ(Pn)}. It is easy to show that the symbolic support matrix of Pσ is DPσ = diag(x, . . . , x) ·
DP . So Pσ is also a Laurent transformally essential system and its sparse difference resultant exists. 
Thus, I1 = [Pσ ] ∩Q{σ(u0), . . . , σ(un)} = sat(Res(σ (P0), . . . , σ(Pn)), . . .).

Let Hi =∑n
k=0 σ(uik)Mik . Since each Hi has the same support with Pi and its coefficient vector is 

σ(ui), Res(H0, . . . , Hn) = σ(Res(P0, . . . , Pn)). Let I2 = [H0, . . . , Hn] ∩ Q{σ(u0), . . . , σ(un)}. We claim 
that I1 = I2, which implies that Res(H0, . . . , Hn) = Res(σ (P0), . . . , σ(Pn)) and the lemma follows.

Let ξi = − 
∑n

k=0 σ(uik)σ (Mik/Mi0), θi = − 
∑n

k=0 σ(uik)Mik/Mi0 and denote û = ⋃n
i=0 σ(ui)\

{σ(ui0)}. As in the proof of Theorem 13, we can show that ξ = (û, ξ0, . . . , ξn) is a generic point 
of I1 and θ = (û, θ0, . . . , θn) is a generic point of I2. For any difference polynomial G ∈ I1, G(ξ) =
0 = (

∑
φ φ(σ (Y))Fφ(u))/M(σ (Y)) where φ and M are distinct difference monomials in σ(Y). Then 

Fφ(u) ≡ 0 for each φ. Thus, G(θ) = (
∑

φ φ(Y)Fφ(u))/M(Y) = 0 and G ∈ I2 follows. So I1 ⊆ I2. Simi-
larly, we can show that I2 ⊆ I1. Hence, I1 = I2. So Res(σ (P0), . . . , σ(Pn)) = σ(Res(P0, . . . , Pn)). �
4.2. Existence of nonzero solutions and incompleteness of difference projective space

In this section, we first give a condition for a system of Laurent difference polynomials to have 
nonzero solutions in terms of sparse difference resultants, and then show that the difference projec-
tive space is not transformally complete.

To be more precise, we first introduce some notations. Let F be a difference field and CF the 
category of difference extension fields of F , where the morphisms are the difference homomorphisms. 
By E ∈ CF , we mean E is a difference extension field of F .

Let A = {M0, M1, . . . , Ml} be a Laurent monomial set. For any E ∈ CQ , there is a one to one 
correspondence between LE (A) defined in (7) and E l+1. For P = ∑l

i=0 ci Mi ∈ LE (A), denote the 
coefficient vector of P by C(P ) = (c0, . . . , cl) ∈ E l+1. Conversely, for any c = (c0, . . . , cl) ∈ E l+1, denote 
the corresponding Laurent difference polynomial by L(c) =∑l

i=0 ci Mi ∈ E{Y±}.
Let A0, . . . , An be a Laurent transformally essential system of Laurent monomials and E ∈ CQ . 

Clearly, each element (P0, . . . , Pn) ∈LE (A0) × · · · ×LE (An) can be represented by one and only one 
element (C(P0), . . . , C(Pn)) ∈ Ê = E l0+1 × · · · × E ln+1. Let Z(A0, . . . , An) be the functor from CQ to 
the category of sets such that for each E ∈ CQ ,

ZE (A0, . . . ,An) := {
(v0, . . . ,vn) ∈ Ê | L(v0) = · · · = L(vn) = 0

has common nonzero solutions for Y
}
.

Similarly, given S ⊂ Q{u0, . . . , un}, we define the difference variety V(S) over Q as a functor from 
CQ to the category of sets such that for each E ∈ CQ ,

VE (S) := {
(v0, . . . ,vn) ∈ Ê | f (v0, . . . ,vn) = 0,∀ f ∈ S

}
.
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For two functors X and Y from CF to the category of sets, we write X ⊆ Y to indicate that X is a 
subfunctor of Y . Namely, XE ⊆ YE for every E ∈ CF . The following result shows that the vanishing of 
the sparse difference resultant gives a necessary condition for the existence of nonzero solutions.

Lemma 39. Z(A0, . . . , An) ⊆V(ResA0,...,An ), where V(ResA0,...,An ) is a difference variety over Q.

Proof. Let P0, . . . , Pn be a generic Laurent transformally essential system corresponding to A0, . . . , An

with coefficient vectors u0, . . . , un . By Definition 15, ResA0,...,An ∈ [P0, . . . , Pn] ∩ Q{u0, . . . , un}. 
For each E ∈ CQ and any point (v0, . . . , vn) ∈ ZE (A0, . . . , An), let (P0, . . . ,Pn) ∈ LE (A0) × · · · ×
LE (An) be the system represented by (v0, . . . , vn). Since P0, . . . ,Pn have a common nonzero so-
lution, ResA0,...,An (v0, . . . , vn) = 0. So ZE (A0, . . . , An) ⊆ VE (ResA0,...,An ). Thus, Z(A0, . . . , An) ⊆
V(ResA0,...,An ) follows. �
Example 40. In Example 19, suppose F = Q(x) and σ f (x) = f (x +1). Then we have Res(P0,P1,P2) �=
0. But y1 = 0, y2 = 0 constitute a zero solution of P0 = P1 = P2 = 0. This shows that Lemma 39 is not 
correct if we do not consider nonzero solutions.

The following theorem shows that a particular principal component of the sparse difference resul-
tant gives a sufficient and necessary condition for a Laurent transformally essential system to have 
nonzero solutions in a certain sense.

Theorem 41. Let Iu = [P0, . . . , Pn] ∩ Q{u0, . . . , un} = sat(ResA0,...,An , R1, . . . , Rm) as defined in (8). Let 
Z(A0, . . . ,An) be the Cohn topological closure1 of Z(A0, . . . , An) over Q, that is, the minimal difference 
variety V over Q containing Z(A0, . . . , An). Then Z(A0, . . . ,An) = V(sat(ResA0,...,An , R1, . . . , Rm)).

Proof. Similarly to the proof of Lemma 39, we can show Iu vanishes at ZE (A0, . . . , An) for each 
E ∈ CQ . So Z(A0, . . . ,An) ⊆ V(sat(ResA0,...,An , R1, . . . , Rm)).

For the other direction, follow notations in the proof of Theorem 13. By Theorem 13, IY,u is a re-
flexive prime difference ideal with a generic point (η, ζ ) where η = (η1, . . . , ηn) is a generic point of 
[0]Q〈u〉{Y} and ζ = (ζ0, u01, . . . , u0l0 ; . . . ; ζn, un1, . . . , unln ). Let (F0, . . . , Fn) ∈LE (A0) ×· · ·×LE (An) be 
a set of Laurent difference polynomials represented by ζ where E = Q〈ζ 〉. Clearly, η is a nonzero so-
lution of Fi = 0. Thus, ζ ∈ ZE (A0, . . . , An). Since ζ is a generic point of sat(ResA0,...,An , R1, . . . , Rm), 
we have V(sat(ResA0,...,An , R1, . . . , Rm)) ⊆Z(A0, . . . ,An) and the theorem is proved. �
Remark 42. If Problem 23 can be solved positively, then the vanishing of sat(R) also gives a sufficient 
condition for P0 = · · · = Pn = 0 to have a nonzero solution in the sense of Cohn topological closure. 
That is, Z(A0, . . . ,An) = V(sat(R)).

The following example shows that the vanishing of the sparse difference resultant is not a suffi-
cient condition for the given system to have common nonzero solutions.

Example 43. In Example 18, consider the specialized system P0 = y2
1 − 1,P1 = y(1)

1 + y1. From Ex-
ample 18, it can be checked that Res(P0,P1) = 0, but P0 = P1 = 0 has no solutions. Note that in 
this example, Iu = sat(R). Theorem 41 shows that Z(A0, . . . , An) is dense in V(sat(R)). This example 
shows that for certain Ai , Z(A0, . . . , An) is a proper subset of V(sat(R)).

In the following, Example 43 is used to show that the difference projective space is not transfor-
mally complete. Before giving the main result, we introduce some basic notions.

1 For rigorous definition, see Wibmer (2013).
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Definition 44. The difference projective (n-)space over F is the functor Pn from CF to the category of 
sets such that for each E ∈ CF , Pn(E) is the projective (n-)space over E . Let S be a set of transformally 
homogenous difference polynomials in F{z0, . . . , zn}. The subfunctor functor V(S) of Pn given by 
VE (S) = {a ∈ Pn(E) | f (a) = 0, ∀ f ∈ S} is called a projective difference variety over F .

More generally, given n1, . . . , np ∈ N, we define the p-difference projective space Pn1 × · · · × Pnp

over F as the functor mapping each E ∈ CF to Pn1 (E) ×· · ·× Pnp (E). Let (zi j)1≤i≤p,0≤ j≤ni be a family 
of difference indeterminates over F , set zi = (zi0, . . . , zini ) and consider the difference polynomial 
ring F{z1, . . . , zp}. Let f ∈ F{z1, . . . , zp}. If for each index i, f is transformally homogenous in zi , 
f is said to be transformally p-homogenous in z1, . . . , zp . A projective difference zero of f is a point 
(a1, . . . , ap) ∈ Pn1 (E) × · · · × Pnp (E) such that f (a1, . . . , ap) = 0. A subfunctor V ⊂ Pn1 × · · · × Pnp is 
called a difference variety over F if there exists a set of transformally p-homogenous polynomials 
S ⊂F{z1, . . . , zp} such that V = V(S). And by VE , we mean VE (S). If for each E ∈ CF , VE = ∅, then 
we simply denote V = ∅.

Definition 45. A projective difference variety V ⊂ Pn over F is said to be transformally complete if 
the projection π : Pm × V → Pm is transformally closed in the following sense: for each projective 
difference variety W ⊂ Pm × V over F , there exists a projective difference variety V(S) ⊂ Pm for 
S ⊂ F{z0, z1, . . . , zm} such that for each E ∈ CF , a ∈ VE (S) if and only if a ∈ π(WE1 ) for some 
difference extension field E1 of E .

For convenience, V(S) that corresponds to W in Definition 45 is denoted by π(W ). The following 
result shows that the projective space is not transformally complete.

Theorem 46. P1 over F is not transformally complete.2

Proof. Suppose P1 is transformally complete. Consider π : P1 × P1 → P1, where the coordinate ring 
of the first P1 is F{y0, y1} and the coordinate ring of the second P1 is F{z0, z1}. Let W = V(y0 y(1)

1 −
y1 y(1)

0 , z2
1 y0 − y1z2

0, z0z(1)
1 + z1z(1)

0 ) ⊂ P1 × P1. Let β be an algebraic transcendental element over F . 
We adjoin 

√
β to F by defining σ(β) = β and σ(

√
β) = −√

β . Then F1 = F(
√

β) ∈ CF . Clearly, 
(1, β; 1, 

√
β) ∈ WF1 . So W �= ∅.

For transformally homogenous difference polynomials Pi(z0, z1) (i = 0, 1) in z0 and z1, define the 
sparse difference resultant of P0, P1 as Res(P0(1, z1), P1(1, z1)). If we regard z2

1 y0 − y1z2
0, z0z(1)

1 +
z1z(1)

0 as transformally homogenous difference polynomials in z0, z1 with y0, y1 as coefficients, then, 
by Example 18, y0 y(1)

1 − y1 y(1)
0 is the sparse difference resultant of z2

1 y0 − y1z2
0, z0z(1)

1 + z1z(1)
0 . Since 

P1 is assumed to be transformally complete, it is easy to show π(W ) = V(y0 y(1)
1 − y1 y(1)

0 ). This is 
equivalent to say that a specialized system of z2

1 y0 − y1z2
0, z0z(1)

1 + z1z(1)
0 has a common projective 

difference zero in z0, z1 if and only if the sparse difference resultant vanishes. But Example 43 shows 
this is impossible. Indeed, since (1, 1) ∈ VF (y0 y(1)

1 − y1 y(1)
0 ), (1, 1) ∈ πE (W ) for some E ∈ CF . That 

is, there exists (b0, b1) ∈ P1(E) such that (1, 1; b0, b1) ∈ WE . By Example 43, b2
1 − b2

0 = 0, b0b(1)
1 +

b1b(1)
0 = 0 have no solution in P1(E) for any E ∈ CF , a contradiction. Thus, P1 is not transformally 

complete. �
4.3. Order and effective order bounds in terms of Jacobi numbers

In this section, we will give order and effective order bounds for the sparse difference resultant in 
terms of the Jacobi number of the given system.

2 The theorem also holds in the case char(F) = p �= 0. Since this paper only concerns the case of characteristic zero, we will 
not give the proof.
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Consider a generic Laurent transformally essential system {P0, . . . , Pn} defined in (2) with ui =
(ui0, ui1, . . . , uili ) being the coefficient vector of Pi (i = 0, . . . , n). Suppose R is the sparse difference 
resultant of P0, . . . , Pn . Denote ord(R, ui) to be the maximal order of R in uik (k = 0, . . . , li), that is, 
ord(R, ui) = maxk ord(R, uik). If ui does not occur in R, then set ord(R, ui) = −∞. First, we have the 
following result.

Lemma 47. If ord(R, ui) = hi ≥ 0, then ord(R, uik) = hi for each k = 0, . . . , li .

Proof. First, for each k ∈ {1, . . . , li}, by differentiating R(u; ζ0, . . . , ζn) = 0 w.r.t. u(hi)

ik , we have 
∂R

∂u
(hi )
ik

(u, ζ0, . . . , ζn) + ∂R

∂u
(hi )
i0

(u, ζ0, . . . , ζn)(− Mik(η)
Mi0(η)

)(hi) = 0. Suppose ord(R, ui) = ord(R, uik0 ) = hi . If 

k0 = 0, then ∂R

∂u
(hi )
i0

(u, ζ0, . . . , ζn) �= 0 by Lemma 16. So ∂R

∂u
(hi )
ik

�= 0. Thus, ord(R, uik) = hi for each k. 

If k0 �= 0, then ∂R

∂u
(hi )
ik0

(u, ζ0, . . . , ζn) �= 0 and ∂R

∂u
(hi )
i0

�= 0 follows. So by the case k0 = 0, for each k, 

ord(R, uik) = hi . �
Let B = (bij) be an n × n matrix where bij is an integer or −∞. A diagonal sum of B is any 

sum 
∑n

i=1 biσ(i) with σ a permutation of 1, . . . , n. Suppose A is an m × n matrix. Let k = min{m, n}. 
A diagonal sum of A is a diagonal sum of any k × k submatrix of A. The Jacobi number of A is the 
maximal diagonal sum of A, denoted by Jac(A).

Let si j = ord(N(Pi), y j) (i = 0, . . . , n; j = 1, . . . , n) and si = ord(N(Pi)). We call the (n + 1) × n
matrix A = (si j) the order matrix of P0, . . . , Pn . By Aî , we mean the submatrix of A obtained by 
deleting the (i +1)-th row from A. We use N(P) to denote the set {N(P0), . . . , N(Pn)} and by N(P)î , we 
mean the set N(P)\{N(Pi)}. We call Ji = Jac(Aî) the Jacobi number of the system N(P)î , also denoted 
by Jac(N(P)î). The following result shows that the order of a difference system is closely related with 
its Jacobi number.

Theorem 48. (See Hrushovski, 2004.) Let S = { f1, . . . , fn} ⊂F{Y} be a system of difference polynomials over 
F and I ⊂F{Y} a reflexive prime difference ideal minimal over the perfect difference ideal generated by S. If 
I is of dimension zero, then the order of I is bounded by Jac(S).

Before giving an order bound for the sparse difference resultant in terms of Jacobi numbers, we 
first need several lemmas.

Lemma 49. (See Cohn, 1983; Lando, 1970.) Let A be an m × n matrix whose entries are 0’s and 1’s. Let 
Jac(A) = J < min{m, n}. Then A contains an a × b zero sub-matrix with a + b = m + n − J .

Lemma 50. Let P be a Laurent transformally essential system with the following (n + 1) × n order matrix

A =
(

A11 (−∞)r×t

A21 A22

)
,

where r + t ≥ n + 1. Then r + t = n + 1 and Jac(A22) ≥ 0. Moreover, when regarded as difference polynomials 
in y1, . . . , yr−1 , {P0, . . . , Pr−1} is Laurent transformally essential.

Proof. The structure of A implies that the symbolic support matrix (for definition, see Section 3.3) of 
P has the following form:

DP =
(

B11 0r×t

B21 B22

)
.

Since P is Laurent transformally essential, by Theorem 31, rk(DP) = n. As rk(DP) ≤ rk(B11) +
rk((B21 B22)) ≤ (n − t) + (n + 1 − r) = 2n + 1 − (r + t), r + t ≤ n + 1. Thus, r + t = n + 1 fol-
lows. Since the above inequality becomes equality, B11 has full column rank. As a consequence, 
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rk(DP) = rk(B11) + rk(B22). Hence, B22 is a t × t nonsingular matrix. Regarding P0, . . . , Pr−1 as differ-
ence polynomials in y1, . . . , yr−1, then B11 is the symbolic support matrix of {P0, . . . , Pr−1} which is 
of full rank. Thus, {P0, . . . , Pr−1} is a Laurent transformally essential system.

It remains to show that Jac(A22) ≥ 0. Suppose the contrary, i.e. Jac(A22) = −∞. Let Ā22 be a t × t
matrix obtained from A22 by replacing −∞ by 0 and replacing all the other elements in A22 by 1’s. 
Then Jac( Ā22) < t , and by Lemma 49, Ā12 contains an a ×b zero submatrix with a +b = 2t − Jac( Ā22) ≥
t + 1. By interchanging rows and columns when necessary, suppose such a zero submatrix is in the 
upper-right corner of Ā22. Then

A22 =
(

C11 (−∞)a×b
C21 C22

)
and B22 =

(
D11 0a×b
D21 D22

)
,

where a + b ≥ t + 1. So rk(B22) ≤ (t − b) + (t − a) ≤ t − 1 which implies that B22 is singular, a contra-
diction. So Jac(A22) ≥ 0. �

The following theorem gives an order bound for the sparse difference resultant in terms of Jacobi 
numbers, which is the first main result in this section.

Theorem 51. Let P be a Laurent transformally essential system and R the sparse difference resultant of P. 
Then3 ord(R, ui) ≤ Ji .

Proof. Without loss of generality, we prove ord(R, u0) ≤ J0. Two cases are considered:
Case 1) J0 = −∞. We need to show that ord(R, u0) = −∞. Since J0 = −∞, by Lemma 49, the order 

matrix of N(P)0̂ has an r × t submatrix (−∞)r×t with r + t ≥ n +1. By Lemma 50, P contains a proper 
Laurent transformally essential subsystem {P j1 , . . . , P jr } ⊂ P\{P0}. So the unique super-essential sub-
system of P is contained in P\{P0}. Thus, by Theorem 34, R does not involve the coefficients of P0. 
Thus, ord(R, u0) = −∞ follows.

Case 2) J0 ≥ 0. If ord(R, u0) = −∞, it is trivial that ord(R, u0) ≤ J0. Now suppose ord(R, u0) ≥ 0. 
Denote ũ =⋃n

i=0 ui\{ui0} and û = ũ ∪ {u10, . . . , un0}. Let J0 = ([N(P1), . . . , N(Pn)] : m)Q〈ũ〉{Y,u10,...,un0} . 
As in the proof of Theorem 13, it is easy to show that J0 is a reflexive prime difference ideal of 
dimension n. Since ord(R, u0) ≥ 0, by Theorem 34, the unique super-essential subsystem of P con-
tains P0. So the symbolic support matrix of N(P1), . . . , N(Pn) is of full rank. For if not, there would 
be a super-essential system contained in {P1, . . . , Pn}, a contradiction. By Lemma 30, {u10, . . . , un0}
is a parametric set of J0. So J = [J0]Q〈û〉{Y} is a reflexive prime difference ideal of dimension 0. 
Since J is a component of the perfect difference ideal generated by N(P1), . . . , N(Pn) in Q〈ũ〉{Y}, by 
Theorem 48, ord(J ) ≤ J0.

Suppose ξ = (ξ1, . . . , ξn) is a generic point of J . Let I = ([J , N(P0)] : m)Q〈û〉{Y,u00} and 
ζ = − 

∑l0
k=1 u0k M0k(ξ)/M00(ξ) ∈ Q〈û, ξ〉. Then, (ξ, ζ ) is a generic point of I . Recall that IY,u =

([N(P0), . . . , N(Pn)] : m)Q{Y,u0,...,un} and IY,u ∩ Q{u0, . . . , un} = sat(R, . . .). Then I = [IY,u]Q〈û〉{Y,u00} . 
Since ord(R, u00) ≥ 0, IY,u ∩ Q{û} = {0}. So I ∩ Q〈û〉{u00} = sat(R, . . .) which has a generic 
point ζ . Thus, by Cohn (1965, p. 79), ord(R, u00) = tr . degQ〈û, ζ 〉/Q〈û〉 ≤ tr . degQ〈û, ξ〉/Q〈û〉 =
ord(J ) ≤ J0. �
Corollary 52. Let P be a super-essential system. Then Ji ≥ 0 for i = 0, . . . , n and ord(R, ui) ≤ Ji .

Proof. If Ji = −∞ for some i, as in the proof of Theorem 51, we can show that P contains a proper 
super-essential subsystem, a contradiction. Therefore, Ji ≥ 0 for i = 0, . . . , n. By Theorem 51, for each i, 
ord(R, ui) ≤ Ji . �
Example 53. Let n = 2 and

3 Here, if Ji = −∞, it means ord(R, ui) = −∞.
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P0 = u00 + u01 y1 y(1)
1 , P1 = u10 + u11 y1, P2 = u10 + u11 y(1)

2 .

The sparse resultant is R = u00u11u(1)
11 + u01u10u(1)

10 . In this example, the order matrix of P is A =( 1 −∞
0 −∞

−∞ 1

)
. Thus J0 = 1, J1 = 2, J2 = −∞. And ord(R, u0) = 0 < J0, ord(R, u1) = 1 < J1, ord(R, u2) =

−∞.

In the following, we give two improved order bounds based on the Jacobi bound given in Theo-
rem 51.

For each j ∈ {1, . . . , n}, let o j = mini{Lord(N(Pi), y j) | Lord(N(Pi), y j) ≥ 0}. In other words, o j is the 

smallest number such that y
(o j)

j occurs in {N(P0), . . . , N(Pn)}. Denote γ =∑n
j=1 o j . Let B = (si j − o j)

be an (n + 1) × n matrix. We call J̄i = Jac(Bî) = Ji − γ the modified Jacobi number of the system Pî . 
Then we have the following result.

Theorem 54. Let P be a Laurent transformally essential system and R the sparse difference resultant of P. Then 
for each i, ord(R, ui) ≤ Ji − γ .

Proof. It is trivial for the case γ = 0. Now suppose γ > 0. First, we perform the change of variables 

ȳ j = y
(o j)

j in P to reduce the problem to the case γ = 0. Let P̂i be obtained from Pi by replacing 

y(k)
j by y

(k−o j)

j ( j = 1, . . . , n; k ≥ o j) in Pi (i = 0, . . . , n) and denote P̂ = {P̂0, . . . , P̂n}. Since DP = D
P̂

·
diag(xo1 , xo2 , . . . , xon ), it implies that rk(D

P̂
) = rk(DP) = n. Thus, I = [P̂] ∩Q{u0, . . . , un} is a reflexive 

prime difference ideal of codimension 1. Recall that Iu = [P0, . . . , Pn] ∩Q{u0, . . . , un} = sat(R, . . .). We 
claim that I = Iu , which implies that R is the sparse difference resultant of P̂.

Suppose Pi = ui0Mi0 + Ti and P̂i = ui0 M̂i0 + T̂ i . Let ζi = −Ti/Mi0 and θi = −T̂ i/M̂i0. Denote u =⋃n
i=0 ui\{ui0}. As in the proof of Theorem 13, we can show that ζ = (u, ζ0, . . . , ζn) is a generic point 

of Iu and θ = (u, θ0, . . . , θn) is a generic point of I . For any difference polynomial G ∈ Iu , G(ζ ) =
0 = (

∑
φ(Y)Fφ(u))/(

∏n
i=1 Mai

i0) where φ(Y) are distinct difference monomials in Y. Then Fφ(u) ≡ 0

for each φ. Thus, G(θ) = (
∑

φ̂(Y)Fφ(u))/(
∏n

i=1 M̂ai
i0) = 0 and G ∈ I follows. So Iu ⊆ I . In the similar 

way, we can show that I ⊆ Iu . Hence, I = Iu and R is the sparse difference resultant of P̂. Since 
Jac(P̂î) = Jac(Pî) − γ , by Theorem 51, the theorem is proved. �

Now, we assume that P is a Laurent transformally essential system which is not super-essential. By 
Theorem 34, P contains a unique super-essential sub-system PI . Without loss of generality, suppose 
I = {0, . . . , r} with r < n. Let AI be the order matrix of PI and for i = 0, . . . , r, let (AI )î be the matrix 
obtained from AI by deleting the (i + 1)-th row. Note that (AI )î is an r × n matrix. Then we have the 
following result.

Theorem 55. With the above notations, we have

ord(R,ui) =
{

hi ≤ Jac((AI )î) i = 0, . . . , r,
−∞ i = r + 1, . . . ,n.

Proof. It suffices to show that ord(R, ui) ≤ Jac((AI )î) for i = 0, . . . , r. Let Li = ui0 +∑n
j=1 uij y j for 

i = r + 1, . . . , n. Since PI is super essential, there exist 
Miki
Mi0

(i = 1, . . . , r) such that their sym-
bolic support matrix B is of full rank. Without loss of generality, we assume that the r-th prin-
cipal submatrix of B is of full rank. Consider a new Laurent difference polynomial system P̃ =
PI ∪ {Lr+1, . . . , Ln}. This system is also Laurent transformally essential, since the symbolic support 
matrix of 

M1k1
M10

, . . . , Mrkr
Mr0

, yr+1, . . . , yn is of full rank. Moreover, PI is the unique rank-essential subsys-

tem of P̃. So R is also the sparse difference resultant of P̃. Since the order vector of Li is (0, . . . , 0)
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for i = r + 1, . . . , n, Jac(̃Pî) = Jac((AI )î) for i = 0, . . . , r. By Theorem 51, ord(R, ui) ≤ Jac((AI )î) for 
i = 0, . . . , r. �
Example 56. In Example 53, I = {0, 1}. Then AI = (1 0)T. Thus Jac((AI )0̂) = 0, Jac((AI )1̂) = 1. For 
this example, the exact bounds are given: ord(R, u0) = 0 = Jac((AI )0̂), ord(R, u1) = 1 = Jac((AI )1̂), 
ord(R, u2) = −∞.

We conclude this section by giving an improved Jacobi-type bound for the effective order of the 
sparse difference resultant.

Assume P is a Laurent transformally essential system whose sparse difference resultant is R. 
By Lemma 47, u(s)

i0 effectively appears in R if and only if u(s)
ik effectively appears in R for each 

k ∈ {0, . . . , li}. Thus, we can define Lord(R, ui) = Lord(R, ui0) and Eord(R, ui) = ord(R, ui) − Lord(R, ui)

whenever ui effectively appears in R.
For further discussion, suppose PI is the super-essential subsystem of {P0, P1, . . . , Pn}. With-

out loss of generality, assume I = {0, 1, . . . , p}. For each i ∈ {0, . . . , p}, let si = minn
j=1{Lord(Pi, y j) |

Lord(Pi, y j) �= −∞} and s =∑p
i=0 si . Let ̃Ji = Ji − s + si . Then,

Theorem 57. The effective order of R in ui is bounded by ̃Ji for each 0 ≤ i ≤ p.

Proof. Let m = maxp
i=0 si . Consider the following difference system

P1 = {
P

(m−s0)

0 , . . . ,P
(m−sp)

p
}

which is also super-essential. Suppose R1 is the sparse difference resultant of P1. Clearly, R1 ∈
Iu = [P0, . . . , Pp] ∩ Q{u0, . . . , up}, so ord(R1, ui) ≥ ord(R, ui) for each i ∈ {0, . . . , p}. Since y[m−1]

j

( j = 1, . . . , n) do not occur in P1, by replacing y(t)
j ( j = 1, . . . , n) by z(t−m)

j in P1, we obtain a new 
system P2. As in the proof of Theorem 54, we can show that R1 is also the sparse difference resultant 
of P2. Suppose B is the order matrix of P2. Clearly, Jac(Bî) = J̃i . By Theorem 55, ord(R1, u

(m−si)

i ) ≤ J̃i . 
So Eord(R1, ui) ≤ J̃i and ord(R1, ui) ≤ J̃i + m − si for each i ∈ {0, . . . , p}.

Let hi = ord(R, ui) and oi = Lord(R, ui). We need to show that hi − oi ≤ J̃i holds for each i ∈
{0, . . . , p}. Suppose the contrary, i.e. there exists some i0 ∈ {0, . . . , p} such that Eord(R, ui0) = hi0 −
oi0 > J̃i0 .

Suppose h̄i0 = ord(R1, ui0) and ōi0 = Lord(R1, ui0 ). Then, h̄i0 ≥ hi0 and Eord(R1, ui0) = h̄i0 − ōi0 ≤
J̃i0 < hi0 − oi0 . Clearly, σ h̄i0 ui00 appears effectively in both σ h̄i0 −hi0 R and R1. Let B1 be the Sylvester 
resultant of σ h̄i0 −hi0 R and R1 w.r.t. σ h̄i0 ui00. We claim that B1 �= 0. Suppose the contrary, then we 
have σ h̄i0 −hi0 R | R1, for R is irreducible. This is impossible since σ h̄i0 −hi0 +oi0 ui00 appears effectively in 
σ h̄i0 −hi0 R while not in R1 for h̄i0 − hi0 + oi0 < ōi0 .

Let h̃i0 = ord(B1, ui00) and õi0 = Lord(B1, ui00). Since B1 is the resultant of σ h̄i0 −hi0 R and R1, 
h̃i0 < h̄i0 and ̃oi0 ≥ h̄i0 − hi0 + oi0 . Then ̃hi0 − õi0 < h̄i0 − (h̄i0 − hi0 + oi0 ) = hi0 − oi0 . Since B1 ∈ Iu , by 
Lemma 16, ord(B1, ui00) ≥ ord(R, ui00). Repeat the above procedure for B1 and σ h̃i0 −hi0 R, we obtain 
a nonzero difference polynomial B2 ∈ Iu and ord(B2, ui00) < ord(B1, ui00). Continuing procedures in 
this way, one can obtain a nonzero Bl ∈ Iu such that ord(Bl, ui00) < ord(R, ui00) which contradicts 
Lemma 16. �

By the proof of the above theorem, the order of R1 with respect to ui is bounded by J̃ i + m − si . 
Thus, we have the following new order bound for R.

Corollary 58. Let R and ̃ J i (i = 0, . . . , p) be defined as above. Then the order of R in ui is bounded by Ji =
J̃ i + s̄ − si = Ji − s + s̄ for each 0 ≤ i ≤ p where s̄ = maxp

i=0 si .
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Example 59. Let P0 = u00 + u01 y1 + u02 y2, P1 = u10 + u11 y(1)
1 + u12 y(1)

2 , P2 = u20 + u21 y(1)
1 + u22 y(1)

2 . 
Then J0 = J̄0 = 2, J1 = J̄1 = 1, J2 = J̄2 = 1, ̃J0 = J̃1 = J̃2 = 0. By Corollary 58, J0 = 1, J1 = 0, J2 = 0. Notice 

that R =
∣∣∣∣∣ u(1)

00 u(1)
01 u(1)

02
u10 u11 u12
u20 u21 u22

∣∣∣∣∣ and ̃J0 = J̃1 = J̃2 = 0, J0 = 1, J1 = J2 = 0 give the exact effective order and order 

of R respectively.

5. Sparse difference resultants as algebraic sparse resultants

In this section, we will show that the sparse difference resultant is equal to the algebraic sparse 
resultant of certain generic sparse polynomial system, which leads to a determinant representation 
for the sparse difference resultant.

5.1. Preliminaries on algebraic sparse resultant

We first prove several properties on algebraic sparse resultants which are needed in this paper. 
For more details about sparse resultant, please refer to Gelfand et al. (1994) and Sturmfels (1993).

Let B0, . . . , Bn be finite subsets of Zn . Assume 0 ∈ Bi and |Bi | ≥ 2 for each i. For algebraic indeter-
minates X = {x1, . . . , xn} and α = (α1, . . . , αn) ∈ Zn , denote Xα =∏n

i=1 xαi
i . Let

Fi(x1, . . . , xn) = ci0 +
∑

α∈Bi\{0}
ciαX

α (i = 0, . . . ,n) (10)

be generic sparse Laurent polynomials, where ciα are algebraic indeterminates. We call Bi the support 
of Fi and ωi =∑

α∈Bi
ciαα is called the symbolic support vector of Fi . The smallest convex subset of Rn

containing Bi is called the Newton polytope of Fi . For any subset I ⊂ {0, . . . , n}, the matrix DI whose 
row vectors are ωi (i ∈ I) is called the symbolic support matrix of {Fi : i ∈ I}. Denote ci = (ciα)α∈Bi and 
cI =⋃

i∈I ci .
The following result is a direct consequence of Lemma 30 in the algebraic case.

Lemma 60. For any subset I ⊂ {0, . . . , n}, tr . degQ(cI )(Fi : i ∈ I)/Q(cI ) = rk(DI ).

Definition 61. Follow the notations introduced above.

• A collection of {Fi}i∈I is said to be weak essential if rk(DI ) = |I| − 1.
• A collection of {Fi}i∈I is said to be essential if rk(DI ) = |I| − 1 and for each proper subset J of I, 

rk(D J ) = | J |.

Similar to Theorems 31 and 34, we have the following two lemmas.

Lemma 62. The system {Fi}i∈I is weak essential if and only if (Fi : i ∈ I) ∩Q[cI ] is of codimension one. In this 
case, there exists an irreducible polynomial R ∈ Q[cI ] such that (Fi : i ∈ I) ∩ Q[cI ] = (R) and R is called the
sparse resultant of {Fi : i ∈ I}.

Proof. Let ζi = − 
∑

α∈Bi\{0} ciαX
α and ζ = (ζi)i∈I . Then it is easy to show that θ = (x1, . . . , xn, ζ ) is 

a generic point of (Fi : i ∈ I)Q(cI \{ci0})[X,ci0:i∈I] . Thus, ζ is a generic point of (Fi : i ∈ I) ∩ Q[cI ] and its 
codimension is equal to |I| − tr . degQ(cI\{ci0})(ζi : i ∈ I)/Q(cI\{ci0}) = |I| − tr . degQ(cI )(Fi : i ∈ I)/
Q(cI ) = |I| − rk(DI ) by Lemma 60. By Definition 61, the first assertion follows. The last part of the 
lemma follows from a basic property of prime ideals of codimension one in algebraic geometry. �
Lemma 63. {Fi}i∈I is essential if and only if (Fi : i ∈ I) ∩Q[cI ] = (R) and ci appears effectively in R for each 
i ∈ I .
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Proof. The lemma follows from Lemma 62 and the fact that if (Fi : i ∈ I) ∩Q[cI ] = (R), then for each j, 
(Fi : i �= j) ∩ Q[ci : i �= j] = {0} is a necessary and sufficient condition for c j appearing effectively 
in R. �

Suppose an arbitrary total ordering of {F0, . . . , Fn} is given, say Fn > · · · > F1 > F0. Now we 
define a total ordering among subsets of {F0, . . . , Fn}. For any two subsets D = {D0, . . . , Ds} and 
C = {C0, . . . , Ct} where D0 > · · · > Ds and C0 > · · · > Ct , D is said to be of higher ranking than C , 
denoted by D � C , if 1) there exists an i ≤ min(s, t) such that D0 = C0, . . . , Di−1 = Ci−1, Di > Ci or 
2) s > t and Di = Ci (i = 0, . . . , t). Note that if D is a proper subset of C , then C �D.

Lemma 64. Let F = {Fi : i = 0, . . . , n} be the system given in (10). Suppose rk(DF) ≤ n. Then F has an essential 
subset with minimal ranking.

Proof. It suffices to show that F contains an essential subset, for the existence of an essential subset 
with minimal ranking can be deduced since “�” is a total ordering.

Let Ti = F\{F0, . . . , Fi−1} (i = 1, . . . , n) and T0 = F. We claim that at least one of Ti is weak 
essential. If rk(DT0 ) = n, we are done. Otherwise, rk(DT0 ) < n. It is clear that rk(DTi ) = rk(DTi−1 ) or 
rk(DTi ) = rk(DTi−1 ) − 1 for i = 1, . . . , n − 1, so when deleting one row from the matrix, the co-rank, 
i.e. |Ti| − rk(DTi ), will be unchanged or decreased by 1. Since rk(DT0 ) < n, the co-rank of DT0 is larger 
than 1. Since the co-rank of DTn is 0, there exists a k ∈ {1, . . . , n − 1} such that the co-rank of DTk

is 1. Then DTk is weak essential. Now, let R be the sparse resultant of Tk and let C be the set of 
Fi ∈ Tk such that the coefficients of Fi occur in R effectively. Then, C is an essential subset of F by 
Lemma 63. �

An essential system {Fi}i∈I is called variable-essential if the number of xk appearing effectively in 
Fi (i ∈ I) is |I| − 1. The following lemma shows that a variable-essential system can be obtained from 
an essential one.

Lemma 65. Suppose FI = {Fi : i ∈ I} is essential. Then there exist n − |I| + 1 of the xi such that by setting 
these xi to 1, the specialized system ̃FI = {̃Fi : i ∈ I} satisfies

(1) F̃I is still essential.
(2) rk(DF̃I

) = |I| − 1 is the number of variables in ̃FI .

(3) (FI ) ∩Q[cI ] = (̃FI ) ∩Q[cI ].

Proof. Let DI = (mij)|I|×n be the symbolic support matrix of FI . Since FI is essential, DI con-
tains a submatrix of rank |I| − 1. Without loss of generality, we assume the matrix D0 =
(mij)i=1,...,|I|−1; j=1,...,|I|−1 is of full rank. Then consider the new system F̃I obtained by setting xi = 1
(i = |I|, . . . , n) in FI . Since D0 is a submatrix of DF̃I

, F̃I is weak essential. By Lemma 62, we have 
(FI ) ∩ Q[cI ] = (R) and (̃FI ) ∩ Q[cI ] = (̃R) where R, ̃R are irreducible polynomials in Q[cI ]. Hence, 
there exists a monomial m ∈ Q[x1, . . . , xn] such that mR = ∑

Q iFi . Set xi = 1 (i = |I|, . . . , n), then 
we have m̃R =∑

Q̃ iF̃i . Hence R ∈ (̃R). Since both R and R̃ are irreducible, (̃R) = (R) and (2) follows. 
Thus, ci (i ∈ I) appears effectively in R̃, for FI is essential. By Lemma 63, F̃I is essential and (1) is 
proved. (2) is obvious and the lemma is proved. �
Lemma 66. Let F = {F0, . . . , Fn} be a variable-essential system of the form (10). Then we can find an invertible 
variable transformation x1 =∏n

j=1 z
m1 j

j , . . . , xn =∏n
j=1 z

mnj

j for mij ∈ Q, such that the image G of F under 
the above transformation is a generic sparse Laurent polynomial system satisfying

(1) G is variable-essential.
(2) SpanZ(B) = Zn, where B is the set of the supports of all monomials in G.
(3) (F) ∩Q[c] = (G) ∩Q[c].
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Proof. This is a direct consequence of the Smith normal form method (Cohen, 1993, p. 67). Also see 
Shen et al. (2011) for an alternative proof. �

We call a system F = {Fi : i = 0, . . . , n} strong essential if F satisfies conditions (1) and (2) in 
Lemma 66. Recall that condition (2) is a basic requirement for studying sparse resultants in historic 
literatures and a strong essential system here is just an essential system as defined in Sturmfels (1994)
and D’Andrea (2002). If F is strong essential, a matrix representation for R can be derived, that is, 
R can be represented as the quotient of the determinants of two matrices as shown in D’Andrea
(2002). Moreover, the exact degree of the sparse resultant R can be given in terms of mixed volumes 
(Sturmfels, 1994), famous as the BKK-type degree bound. That is,

Theorem 67. (See Sturmfels, 1994.) Suppose F = {Fi : i = 0, . . . , n} is a strong essential system of the form 
(10). Then, for each i ∈ {0, 1, . . . , n}, the degree of the sparse resultant in ui is a positive integer, equal to the
mixed volume

M(Q0, . . . ,Qi−1,Qi+1, . . . ,Qn) =
∑

J⊂{0,...,i−1,i+1,...,n}
(−1)n−|J| vol

(∑
j∈J

Q j

)
where Qi is the Newton polytope of Fi , vol(Q) means the n-dimensional volume of Q ⊂ Rn and 

∑
j∈J Q j is 

the Minkowski sum of Q j ( j ∈ J ).

5.2. Sparse difference resultant as algebraic sparse resultant

Let P = {P0, . . . , Pn} be a Laurent transformally essential system as defined in (2). Given a vector 
k = (k0, k1, . . . , kp) ∈ Nn+1

0 , the Laurent polynomial system 
⋃p

i=0 P
[ki ]
i is called a prolongation of the 

system P with respect to k, denoted by P[k] . Since the coefficient vector of P( j)
i is (u( j)

i0 , . . . , u( j)
ili

), 
the coefficients of distinct Laurent polynomials in P[k] are algebraically independent over Q. Thus, 
regarded as purely algebraic Laurent polynomials, P[k] is a system of generic sparse Laurent polyno-
mials. In this section, we will show that the sparse difference resultant of P is closely related to the 
algebraic sparse resultant of a certain system obtained from a prolongation of P.

With the above preparation, we now give the main result of this section.

Theorem 68. Let R be the sparse difference resultant of the Laurent transformally essential system (2). Then 
we can obtain a strong essential generic algebraic sparse polynomial system S from (2), such that the sparse 
resultant of S is equal to R.

Proof. By Theorem 34, the system (2) has a unique super-essential subsystem PI . Without loss of 
generality, assume I = {0, 1, . . . , p}. For each i ∈ {0, . . . , p}, let ki = Jac((AI )î) as defined in Theorem 55

and let k = (k0, k1, . . . , kp) ∈N
p+1
0 . Let

P =
p⋃

i=0

N(Pi)
[ki ] (11)

be the prolongation of N(P)I with respect to k. Then P is a generic sparse polynomial system in 
variables y( j)

i with coefficients U =⋃n
i=0 u[ki ]

i . In the rest of the proof, P is considered as a set of 
algebraic polynomials in variables y( j)

i .
A total ordering for polynomials in P is assigned as follows: σ kPi < σ lP j if and only if i < j or 

i = j and k < l. A total ordering � among subsets of P is the same as the one given in Section 5.1. By 
Theorem 55, rk(DP ) ≤∑p

i=0 ki + p = |P| − 1. By Lemma 64, we can construct an essential subsystem 
P1 of P with minimal ranking. Let R1 be the sparse resultant of P1, that is, (P1) ∩Q[U ] = (R1).

We claim that R1 = c · R for some c ∈ Q. Since PI is super essential, for each i ∈ I , ord(R, ui) ≥ 0. 
By Theorem 55, R ∈ (P). Let P2 be the elements of P whose coefficients appear effectively in R. By 
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Lemma 63, P2 is essential and (P2) ∩ Q[U ] = (R). Let k1 and k2 be the largest integers such that 
σ k1Pp ∈ P1 and σ k2Pp ∈ P2. Since P1 and P2 are essential, ord(R1, up) = k1 and ord(R, up) = k2. 
Since P2 � P1, k1 ≤ k2. Since R1 ∈ (P1) ∩ Q[U ] ⊂ [PI ] ∩ Q{u0, . . . , up} = sat(R, . . .), by Lemma 16, 
k1 ≥ k2. Hence, k1 = k2, i.e. ord(R1, up) = ord(R, up). Since R1 ∈ sat(R, . . .), R1 is algebraically reduced 
to zero by R. Since both R and R1 are irreducible, R = cR1 for some c ∈ Q.

Apply Lemma 65 to P1, we obtain a variable-essential system P3 satisfying (P3) ∩ Q[U ] = (R). 
Then apply Lemma 66 to P3, we obtain a strong essential generic system S satisfying (S) ∩ Q[U ] =
(R) and the existence of S is proved.

We will show that S can be given algorithmically. Through the above procedures, only Lemma 64
is not constructive. Since P contains an essential subsystem, we can simply check each subsystems S
of P to see whether S is essential and find the one with minimal ranking. Note that S is essential if 
and only if rk(DS ) = |S| − 1 and any proper subset C of S satisfies rk(DC) = |C|. �
Example 69. Let n = 3. Denote yij = y( j)

i and let P = {P0, P1, P2, P3} where P0 = u00 + u01 y2
11 y2

21 y3 +
u02 y2

1 y2 y3, P1 = u10 + u11 y4
12 y4

22 y2
31 + u12 y2

11 y21 y31, P2 = u20 + u21 y2
11 y2

21 y3 + u22 y2
1 y2 y3 and P3 =

u30 + u31 y11 y3.
It is easy to show that P is a Laurent transformally essential system and I = {0, 1, 2}. Clearly, 

Jac((AI )0̂) = 3, Jac((AI )1̂) = 2 and Jac((AI )2̂) = 3. Using the notations in Theorem 68, we have P =
{P[3]

0 , P[2]
1 , P[3]

2 }, and we can compute an essential subset P1 with minimal ranking. Here, we have 
P1 = {σP0, P1, σP2}. Using the variable order y11 < y12 < y21 < y22 < y31 to obtain the symbolic 
support matrix of P1, the first 2 × 2 sub-matrix of DP1 is of rank 2. By the proof of Lemma 65, 
we set y21, y22, y31 to 1 to obtain a variable essential system P2 = {σ̃P0, P̃1, σ̃P2} where σ̃P0 =
u(1)

00 +u(1)
01 y2

12 +u(1)
02 y2

11, P̃1 = u10 +u11 y4
12 +u12 y2

11, σ̃P2 = u(1)
20 +u(1)

21 y2
12 +u(1)

22 y2
11. Apply Lemma 66 to 

P2, set z1 = y2
11, z2 = y2

12, we obtain a strong essential generic system P3 = {Q 0, Q 1, Q 2} where Q 0 =
u(1)

00 + u(1)
01 z2 + u(1)

02 z1, Q 1 = u10 + u11z2
2 + u12z1 and Q 2 = u(1)

20 + u(1)
21 z2 + u(1)

22 z1. The sparse resultant 
of P3 is R = u10(u(1)

02 u(1)
21 − u(1)

01 u(1)
22 )2 + u11(u(1)

00 u(1)
22 − u(1)

02 u(1)
20 )2 + u12(u(1)

00 u(1)
21 − u(1)

01 u(1)
20 )(u(1)

02 u(1)
21 −

u(1)
01 u(1)

22 ), which is the sparse difference resultant of P.

The following corollary is a direct consequence of the proof of Theorem 68 and D’Andrea (2002).

Corollary 70. The sparse difference resultant R of a Laurent transformally essential system (2) can be repre-
sented as the quotient of two determinants whose elements are u(k)

i j or their sums for certain i ∈ {0, . . . , n}, j ∈
{0, . . . , li} and k ∈ {0, . . . , Ji}, where Ji is the Jacobi number of the system (2) as defined in Section 4.3.

Remark 71. It is desirable to derive a degree bound for R from Theorem 68. Let S be the strong 
essential set mentioned in the theorem. Then, the degree of R is equal to the mixed volume of S by 
Theorem 67. The problem is how to express the mixed volume of S in terms of certain quantities of 
PI without computing S .

6. A single exponential algorithm to compute the sparse difference resultant

In this section, we give an algorithm to compute the sparse difference resultant for a Laurent 
transformally essential system with single exponential complexity. The idea is to estimate the degree 
bounds for the resultant and then to use linear algebra to find the coefficients of the resultant.

6.1. Degree bounds for sparse difference resultants

In this section, we give an upper bound for the degree of the sparse difference resultant, which 
will be crucial to our algorithm to compute the sparse resultant. Before proposing the main theorem, 
we first give some algebraic results which will be needed in the proof.
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Lemma 72. (See Heintz, 1983; Vogel, 1984.) Let V 1, . . . , Vr (r ≥ 2) be pure dimensional projective varieties 
in Pn. Then

r∏
i=1

deg(V i) ≥
∑

C

deg(C)

where C runs through all irreducible components of V 1 ∩ · · · ∩ Vr .

Lemma 73. (See Heintz, 1983; Li et al., 2011.) Let I be a prime ideal in K[X] and Ir = I ∩K[x1, . . . , xr] for 
any 1 ≤ r ≤ n. Then deg(Ir) ≤ deg(I).

Now we are ready to give the main theorem of this section.

Theorem 74. Let P0, . . . , Pn be a Laurent transformally essential system of the form (2) with ord(N(Pi, y j)) =
si j and deg(N(Pi), Y) = mi . Suppose N(Pi) =∑ti

k=0 uik Nik and Ji is the Jacobi number of {N(P0), . . . , N(Pn)}\
{N(Pi)}. Let R be the sparse difference resultant of Pi . Suppose ord(R, ui) = hi for each i. Then the following 
assertions hold:

1) deg(R) ≤∏n
i=0(mi + 1)hi+1 ≤ (m + 1)

∑n
i=0(Ji+1) , where m = maxi{mi}.

2) R has a representation

n∏
i=0

hi∏
k=0

(
N(k)

i0

)deg(R) · R =
n∑

i=0

hi∑
k=0

GikN(Pi)
(k) (12)

where Gij ∈ Q[u[h0]
0 , . . . , u[hn]

n , y[t1]
1 , . . . , y[tn]

n ] with t j = maxn
i=0{hi + si j} such that deg(Gij(P

N
i )( j)) ≤

[m + 1 +∑n
i=0(hi + 1) deg(Ni0)] deg(R).

Proof. In R, let ui0 be replaced by (N(Pi) − ∑ti
k=1 uik Nik)/Ni0 for each i = 0, . . . , n and let 

R be expanded as a difference polynomial in N(Pi) and their transforms with coefficients in 
Q{Y±; u0, . . . , un}. Then there exist aik ∈ N and polynomials Gik such that 

∏n
i=0

∏hi
k=0(N(k)

i0 )aik R =∑n
i=0

∑hi
k=0 GikN(Pi)

(k) + T with T ∈ Q{u, Y} free from ui0. Since T ∈ IY,u ∩ Q{u, Y} = {0} by Theo-
rem 13, T = 0. Thus,

n∏
i=0

hi∏
k=0

(
N(k)

i0

)aik R =
n∑

i=0

hi∑
k=0

GikN(Pi)
(k).

1) Let t j = maxn
i=0{hi + si j} and Y[t] = {y[t1]

1 , . . . , y[tn]
n }. Denote m[t] to be the set of all monomials 

in Y[t] . Let J = (N(P0)
[h0], . . . , N(Pn)[hn]) : m[t] be an algebraic ideal in R = Q[Y[t], u[h0]

0 , . . . , u[hn]
n ]. 

Then R ∈J by the above equality. Let η = (η1, . . . , ηn) be a generic zero of [0] over Q〈u〉 and denote 
ζi = − 

∑ti
k=1 uik

Nik(η)
Ni0(η)

(i = 0, . . . , n). It is easy to show that J is a prime ideal in R with a generic 

zero (η[t]; ̃u, ζ [h0]
0 , . . . , ζ [hn]

n ) and J ∩ Q[u[h0]
0 , . . . , u[hn]

n ] = (R), where ũ =⋃
i u[hi ]

i \{u[hi ]
i0 }. Let Hik be 

the homogeneous polynomial corresponding to N(Pi)
(k) with x0 the variable of homogeneity. Then 

J 0 = ((Hik)1≤i≤n;0≤k≤hi ) : m̃ is a prime ideal in Q[x0, Y[t], u[h0]
0 , . . . , u[hn]

n ] where m̃ is the whole set 
of monomials in Y[t] and x0. And deg(J 0) = deg(J ).

Since V((Hik)1≤i≤n;0≤k≤hi ) = V(J 0) ∪ V(Hik, x0) 
⋃

j,l V(Hik, y
(l)
j ), V(J 0) is an irreducible compo-

nent of V((Hik)1≤i≤n;0≤k≤hi ). By Lemma 72, deg(J 0) ≤∏n
i=0

∏hi
k=0(mi + 1) =∏n

i=0(mi + 1)hi+1. Thus, 
deg(J ) ≤ ∏n

i=0(mi + 1)hi+1. Since J ∩ Q[u[h0]
0 , . . . , u[hn]

n ] = (R), by Lemma 73, deg(R) ≤ deg(J ) ≤∏n
i=0(mi + 1)hi+1 ≤ (m + 1)

∑n
i=0(Ji+1) follows. The last inequality holds because hi ≤ Ji by Theorem 54.

2) To obtain the degree bounds for the above representation of R, that is, to estimate
deg(GikN(Pi)

(k)) and aik , we take each monomial M in R and substitute ui0 by (N(Pi) −∑li
k=1 uik Nik)/
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Ni0 into M and then expand it. To be more precise, we take one monomial M(u; u00, . . . , un0) =
uγ
∏n

i=0
∏hi

k=0(u(k)
i0 )dik with |γ | + ∑n

i=0
∑hi

k=0 dik = deg(R) for an example, where uγ represents a 
difference monomial in u and their transforms with exponent vector γ . Then

M(u; u00, . . . , un0) = uγ
n∏

i=0

hi∏
k=0

((
N(Pi) −

li∑
k=1

uik Nik

)(k))dik/ n∏
i=0

hi∏
k=0

(
N(k)

i0

)dik .

When expanded, every term of 
∏n

i=0
∏hi

k=0(N(k)
i0 )dik M is of degree bounded by |γ | +∑n

i=0
∑hi

k=0(mi +
1)dik ≤ (m + 1) deg(R) in u[h0]

0 , . . . , u[hn]
n and Y[t] . Suppose R = ∑

M aM M where aM ∈ Q and given 
aik ≥ maxM{dik}. Then 

∏n
i=0

∏hi
k=0(N(k)

i0 )aik R =∑n
i=0

∑hi
k=0 GikN(Pi)

(k) and deg(GikN(Pi)
(k)) ≤ (m +1)×

deg(R) +∑n
i=0

∑hi
k=0 deg(Ni0)aik . Take aik = deg(R), then (12) follows. �

For a transformally essential difference polynomial system with degree zero terms, the second part 
of Theorem 74 can be improved as follows.

Corollary 75. Let Pi = ui0 + ∑li
k=1 uik Nik (i = 0, . . . , n) be a transformally essential difference polyno-

mial system and R be the sparse difference resultant of Pi . Suppose ord(R, ui) = hi for each i and m =
maxi{deg(Pi, Y)}. Then R has a representation

R(u0, . . . ,un) =
n∑

i=0

hi∑
j=0

GijP
( j)
i

where Gij ∈ Q[u[h0]
0 , . . . , u[hn]

n , y[t1]
1 , . . . , y[tn]

n ] with t j = maxn
i=0{hi + si j} such that deg(GijP

( j)
i ) ≤

(m + 1) deg(R) ≤ (m + 1)
∑n

i=0(hi+1)+1 .

Proof. It is direct consequence of Theorem 74 by setting Ni0 = 1. �
6.2. A single exponential algorithm to compute the sparse difference resultant

If a polynomial R is a linear combination of some known polynomials Fi(i = 1, . . . , s), that is 
R =∑s

i=1 Hi Fi , and we know the upper bounds of the degrees of R and Hi Fi , then a general idea to 
estimate the computational complexity of R is to use linear algebra to find coefficients of R . For the 
sparse difference resultant, we already have given its degree bound and the degrees of terms in the 
linear combination as in Theorem 74.

Now, we give the algorithm SDResultant to compute sparse difference resultants based on linear 
algebra techniques which is almost identical to the differential case (Li et al., 2012). The algorithm 
works adaptively by searching for R with an order vector (h0, . . . , hn) ∈ Nn+1

0 with hi ≤ Ji by Theo-
rem 74. Denote o =∑n

i=0 hi . We start with o = 0. And for this o, choose one vector (h0, . . . , hn) at 
a time. For this (h0, . . . , hn), we search for R from degree d = 1. If we cannot find an R with such a 
degree, then we repeat the procedure with degree d + 1 until d >

∏n
i=0(mi + 1)hi+1. In that case, we 

choose another (h0, . . . , hn) with 
∑n

i=0 hi = o. But if for all (h0, . . . , hn) with hi ≤ Ji and 
∑n

i=0 hi = o, 
R cannot be found, then we repeat the procedure with o + 1. In this way, we will find an R with the 
smallest order satisfying Eq. (12), which is the sparse difference resultant.

Theorem 76. Let P = {P0, . . . , Pn} be a Laurent transformally essential system of the form (2). Let Ji =
Jac(N(P)î), J =∑n

i=0 Ji and m = maxi deg(N(Pi), Y). Algorithm SDResultant computes the sparse difference 
resultant R with the following complexities:

1) In terms of a degree bound D of R, it needs at most O (
[(m(J+n+2)+1)D]O (lJ+l)

nn ) Q-arithmetic operations, 
where l =∑n

i=0(li + 1) is the size of all Pi .
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Algorithm 1 SDResultant(P0, . . . , Pn).

Input: A generic Laurent transformally essential system P0, . . . , Pn .
Output: The sparse difference resultant R(u0, . . . , un) of P0, . . . , Pn .

1. For i = 0, . . . , n, set N(Pi) =∑li
k=0 uik Nik with deg(Ni0) ≤ deg(Nik).

Set mi = deg(N(Pi)), mi0 = deg(Ni0), ui = coeff(Pi), |ui | = li + 1.
Set si j = ord(N(Pi), y j), A = (si j) and compute Ji = Jac(Aî).

2. Set R = 0, o = 0, m = maxi{mi}.
3. While R = 0 do

3.1. For each (h0, . . . , hn) ∈Nn+1
0 with ∑n

i=0 hi = o and hi ≤ Ji do

3.1.1. U =⋃n
i=0 u[hi ]

i , t j = maxn
i=0{hi + ei j}, Y[t] = {y[t1]

1 , . . . , y[tn]
n }. d = 1.

3.1.2. While R = 0 and d ≤∏n
i=0(mi + 1)hi +1 do

3.1.2.1. Set R0 to be a homogeneous GPol of degree d in U .
3.1.2.2. Set c0 = coeff(R0, U ).
3.1.2.3. Set Gij(i = 0, . . . , n; j = 0, . . . , hi) to be GPols in variables Y[t] and U

of total degree [m + 1 +∑n
i=0(hi + 1)mi0]d − mi − 1.

3.1.2.4. Set ci j = coeff(Gij , Y[t] ∪ U ).

3.1.2.5. Set P to be the set of coefficients of ∏n
i=0

∏hi
k=0(N(k)

i0 )dR0−∑n
i=0

∑hi
j=0 Gij(N(Pi))

( j) as a polynomial in Y[t] and U .
3.1.2.6. Note that P is a set of linear polynomials in Z[c0, ci j ].

Solve the linear equation P = 0 in c0 and ci j .
3.1.2.7. If c0 has a nonzero solution, then substitute it into R0 to

get R and go to Step 4, else R = 0.
3.1.2.8. d := d + 1.

3.2. o := o + 1.
4. Return R.

/ ∗ / GPol stands for generic algebraic polynomial.

/ ∗ / coeff(P , V ) returns the set of coefficients of P as a polynomial in variables V .

2) The algorithm needs at most O ((J + n + 2)O (lJ+l)(m + 1)O ((lJ+l)(J+n+2))/nn) Q-arithmetic operations.

Proof. The algorithm finds a difference polynomial P ∈ Q{u0, . . . , un} satisfying Eq. (12), which has 
the smallest order and the smallest degree among those with the same order. Existence for such a 
difference polynomial is guaranteed by Theorem 74. Such a P must be in Iu = sat(R, . . .). Since each 
difference polynomial in sat(R, . . .) not equal to R either has greater order than R or has the same 
order but greater degree than R, P must be R (up to a factor in Q).

We will estimate the complexity of the algorithm below. Denote D to be the degree bound of R. 
By Theorem 74, D ≤ (m + 1)

∑n
i=0(Ji+1) = (m + 1)J+n+1, where J =∑n

i=0 Ji . In each loop of Step 3, the 
complexity of the algorithm is clearly dominated by Step 3.1.2, where we need to solve a system of 
linear equations P = 0 over Q in c0 and ci j . Clearly, |c0| =

(d+L1−1
L1−1

)
and |ci j | =

(d1−mi−1+L1+L2
L1+L2

)
, where 

L1 = |U | =∑n
i=0(hi + 1)(li + 1), L2 = |Y[t]| =∑n

j=1(maxi{hi + ei j} + 1) and d1 = [m + 1 +∑n
i=0(hi +

1)mi0]d. Then P = 0 is a linear equation system with W1 = (d+L1−1
L1−1

)+∑n
i=0(hi + 1)

(d1−mi−1+L1+L2
L1+L2

)
variables and W2 = (d1+L1+L2

L1+L2

)
equations. To solve it, we need at most (max{W1, W2})ω arithmetic 

operations over Q, where ω is the matrix multiplication exponent and the currently best known ω is 
2.376.

The iteration in Step 3.1.2 may go through 1 to 
∏n

i=0(mi + 1)hi+1 ≤ (m + 1)
∑n

i=0(Ji+1) , and the 
iteration in Step 3.1 at most will repeat 

∏n
i=0(Ji + 1) times. By Theorem 74, Step 3 may loop from 

o = 0 to J. In the whole algorithm, L1 ≤∑n
i=0(Ji + 1)(li + 1) ≤ lJ + l, L2 = |Y[t]| ≤∑n

j=1(maxi{Ji + ei j} +
1) = J + n by Li et al. (2012, Lemma 5.6), and d1 ≤ [m + 1 +∑n

i=0(Ji + 1)mi0]D = (m(J + n + 2) +
1)D . Thus, W1 ≤ (D+lJ+l−1

lJ+l−1

)+∑n
i=0(Ji + 1)

(
(m(J+n+2)+1)D−mi−1+lJ+l+J+n

lJ+l+J+n

)
and max{W1, W2} ≤ (J + n +

2)
([m(J+n+2)+1]D+lJ+l+J+n

lJ+l+J+n

)
.

Hence, the whole algorithm needs at most
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J∑
o=0

∑
hi≤Ji

h0+···+hn=o

∏n
i=0(mi+1)hi+1∑

d=1

(
max{W1, W2}

)2.376

≤
(

n∏
i=0

(Ji + 1)

)
· D ·

[
(J + n + 2)

([m(J + n + 2) + 1]D + lJ + l + J + n

lJ + l + J + n

)]2.376

≤ (J + n + 2)3.376 (J + n + 1)n+1

nn
· D · [[m(J + n + 2) + 1

]
D
]2.376(lJ+l+J+n)

Q-arithmetic operations. In the above inequalities, we assume [m(J + n + 2) + 1]D ≥ lJ + l + J + n.
Since l ≥ 2(n + 1), the complexity bound is O ([(m(J + n + 2) + 1)D]O (lJ+l)/nn). Our complexity as-

sumes an O (1)-complexity cost for all field operations over Q. Thus, the complexity follows. Now 1) 
is proved. To prove 2), we just need to replace D by the degree bound for R in Theorem 74 in the 
complexity bound in 1). �
Remark 77. As we indicated at the end of Section 3.3, if we first compute the super-essential set I , 
then the algorithm can be improved by only considering the Laurent difference polynomials Pi (i ∈ I)
in the linear combination of the sparse resultant.

7. Difference resultant

In this section, we introduce the notion of difference resultant and prove its basic properties.

Definition 78. Let ms,r be the set of all difference monomials in Y of order ≤ s and degree ≤ r. Let 
u = {uM}M∈ms,r be a set of difference indeterminates over Q. Then, P = ∑

M∈ms,r
uM M is called a 

generic difference polynomial of order s and degree r.

Throughout this section, a generic difference polynomial is assumed to be of degree greater than 
zero. For any vector α = (a1, . . . , am) ∈ Zm and X = (x1, . . . , xm), denote xa1

1 xa2
2 · · · xam

m by Xα . Let

Pi = ui0 +
∑

α∈Zn(si+1)

≥0
1≤|α|≤mi

uiα
(
Y[si ])α (i = 0,1, . . . ,n) (13)

be n + 1 generic difference polynomials in Y of order si , degree mi and coefficients ui . Since 
{1, y1, . . . , yn} is contained in the support of each Pi , {P0, P1, . . . , Pn} is a super-essential system 
and the sparse difference resultant exists. We define Res(P0, . . . ,Pn) to be the difference resultant of 
P0, . . . , Pn .

Because each generic difference polynomial Pi contains all difference monomials of order bounded 
by si and total degree at most mi , the difference resultant is sometimes called the dense difference 
resultant, in contrary to the sparse difference resultant.

The difference resultant satisfies all the properties we have proved for sparse difference resultants 
in previous sections. Apart from these, the difference resultant possess other better properties to be 
given in the rest of this section.

7.1. Exact order and degree

In this section, we will give the precise order and degree for the difference resultant, which is of 
BKK-style (Bernshtein, 1975; Cox et al., 1998).

Theorem 79. Let Pi (i = 0, . . . , n) be generic difference polynomials of the form (13) with order si , degree 
mi , and coefficients ui . Let R(u0, . . . , un) be the difference resultant of P0, . . . , Pn. Denote s =∑n

i=0 si . Then 
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R(u0, . . . , un) is also the algebraic sparse resultant of P[s−s0]
0 , . . . , P[s−sn]

n treated as polynomials in Y[s] . And 
for each i ∈ {0, 1, . . . , n} and k = 0, . . . , s − si ,

ord(R,ui) = s − si (14)

deg
(
R,u(k)

i

)= M
(
(Q jl) j �=i,0≤l≤s−s j ,Qi0, . . . ,Qi,k−1,Qi,k+1, . . . ,Qi,s−si

)
(15)

where Q jl is the Newton polytope of P(l)
j as a polynomial in Y[s] and u(k)

i = (u(k)
iα )uiα∈ui .

Proof. Regard P(k)
i (i = 0, . . . , n; k = 0, . . . , s − si) as polynomials in the n(s + 1) variables Y[s] =

{y1, . . . , yn, y(1)
1 , . . . , y(1)

n , . . . , y(s)
1 , . . . , y(s)

n }, and we denote its support by Bik . Since the coefficients 
u(k)

i of P(k)
i can be treated as algebraic indeterminates, P(k)

i are generic sparse polynomials with sup-
ports Bik , respectively. Now we claim that B is strong essential, that is

C1) B = {Bik : 0 ≤ i ≤ n; 0 ≤ k ≤ s − si} is an essential set.
C2) B = {Bik : 0 ≤ i ≤ n; 0 ≤ k ≤ s − si} jointly spans the affine lattice Zn(s+1) .

Note that |B| = n(s + 1) + 1. To prove C1), it suffices to show that any n(s + 1) distinct P(k)
i are 

algebraically independent. Without loss of generality, we prove that for a fixed l ∈ {0, . . . , s − s0},

Sl = {(
P

(k)
i

)
1≤i≤n;0≤k≤s−si

,P0, . . . ,P
(l−1)
0 ,P

(l+1)
0 , . . . ,P

(s−s0)
0

}
is an algebraically independent set. Clearly, {y(k)

j , . . . , y(si+k)

j | j = 1, . . . , n} is a subset of the support 

of P(k)
i . Choose a monomial from each P(k)

i and denote it by m(P
(k)
i ). Let

m
(
P

(k)
0

)=
{

y(k)
1 0 ≤ k ≤ l − 1

y(s0+k)
1 l + 1 ≤ k ≤ s − s0

and m
(
P

(k)
1

)=
{

y(l+k)
1 0 ≤ k ≤ s0

y(s1+k)
2 s0 + 1 ≤ k ≤ s − s1.

For each i ∈ {2, . . . , n}, let

m
(
P

(k)
i

)=
{

y(k)
i 0 ≤ k ≤∑i−1

j=0 s j

y(si+k)

i+1

∑i−1
j=0 s j + 1 ≤ k ≤ s − si .

So m(Sl) is equal to {y[s]
j : 1 ≤ j ≤ n}, which are algebraically independent over Q. Thus, the 

n(s + 1) members of Sl are algebraically independent over Q. For if not, all the P(k)
i − u(k)

i0 (P
(k)
i ∈ Sl)

are algebraically dependent over Q(v) where v =⋃n
i=0 u[s−si ]

i \{u[s−si ]
i0 }. Now specialize the coefficient 

of m(P
(k)
i ) in P(k)

i to 1, and all the other coefficients of P(k)
i − u(k)

i0 to 0, by the algebraic version of 
Lemma 2, {m(P

(k)
i ) : P(k)

i ∈ Sl} are algebraically dependent over Q, which is a contradiction. Thus, 
claim C1) is proved. Claim C2) follows from the fact that 1 and Y[s] are contained in the support of 
P

[s−s0]
0 .

By C1) and C2), the sparse resultant of (P(k)
i )0≤i≤n;0≤k≤s−si exists and we denote it by G . Then 

(G) = ((P
(k)
i )0≤i≤n;0≤k≤s−si ) ∩ Q[u[s−s0]

0 , . . . , u[s−sn]
n ], and by Theorem 67, deg(G, u(k)

i ) =
M((Q jl) j �=i,0≤l≤s−s j , Qi0, . . . , Qi,k−1, Qi,k+1, . . . , Qi,s−si ), where u(k)

i = (u(k)
i0 , . . . , u(k)

iα , . . .). The theo-
rem is proved if we can show that G = c · R for some c ∈Q.

Since G ∈ [P0, . . . , Pn] and ord(G, ui) = s − si , by Lemma 16, ord(R, ui) ≤ s − si for each i = 0, . . . , n. 
If for some i, ord(R, ui) = hi < s − si , then R ∈ ((P

(k)
j ) j �=i;0≤k≤s−s j , Pi, . . . , P

(hi)

i ), a contradiction to C1). 
Thus, ord(R, ui) = s − si and R ∈ (G). Since R is irreducible, there exists some c ∈ Q such that G = c ·R. 
So R is equal to the algebraic sparse resultant of P[s−s0]

0 , . . . , P[s−sn]
n . �

As a direct consequence of the above theorem and the determinant representation for algebraic 
sparse resultants given in D’Andrea (2002), we have the following result.
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Corollary 80. The difference resultant for generic difference polynomials Pi (i = 0, . . . , n) can be written as 
the form det(D1)/ det(D0) where D1 and D0 are matrices whose elements are coefficients of Pi and their 
transforms up to the order s − si and D0 is a minor of D1 .

Based on the matrix representation given in the above corollary, the efficient algorithms given by 
Emiris and Canny (1995) and Emiris and Pan (2005) can be used to compute the difference resultant.

Corollary 81. The degree of R in each coefficient set ui is

deg(R,ui) =
s−si∑
k=0

M
(
(Q jl) j �=i,0≤l≤s−s j ,Qi0, . . . ,Qi,k−1,Qi,k+1, . . . ,Qi,s−si

)
,

and the total degree of R is

deg(R) =
n∑

i=0

s−si∑
k=0

M
(
(Q jl) j �=i,0≤l≤s−s j ,Qi0, . . . ,Qi,k−1,Qi,k+1, . . . ,Qi,s−si

)
.

Example 82. Consider two generic difference polynomials of order one and degree two in one 
indeterminate y: Pi = ui0 + u01 y + ui2 y(1) + ui3 y2 + ui4 yy(1) + ui5(y(1))2, i = 0, 1. Then the de-
gree bound given by Theorem 74 is deg(R) ≤ (2 + 1)4 = 81. By Theorem 79, deg(R, u0) =
M(Q10, Q11, Q00) + M(Q10, Q11, Q01) = 8 + 8 = 16 and consequently deg(R) = 32, where Q00 =
Q10 = conv{(0, 0, 0), (2, 0, 0), (0, 2, 0)}, Q01 = Q11 = conv{(0, 0, 0), (0, 2, 0), (0, 0, 2)}, and conv(·)
means taking the convex hull in R3. By the proof of Theorem 79, R is the sparse resultant of 
P0, σ(P0), P1, σ(P1).

7.2. Poisson-type product formulas

In this section, we will give a Poisson-type product formula for difference resultant.
Let ũ =⋃n

i=0 ui \ {u00} and Q〈̃u〉 be the transformally transcendental extension of Q in the usual 
sense. Let Q0 = Q〈̃u〉(u00, . . . , u

(s−s0−1)
00 ). Here, Q0 is not necessarily a difference extension field of Q, 

for the transforms of u00 are not defined. In the following, we will follow Cohn (1948) to obtain 
algebraic extensions Gi of Q0 and define transforming operators to make Gi difference fields. Consider 
R as an irreducible algebraic polynomial r(u(s−s0)

00 ) in Q0[u(s−s0)
00 ]. In a suitable algebraic extension field 

of Q0, r(u(s−s0)
00 ) = 0 has t0 = deg(r, u(s−s0)

00 ) = deg(R, u(s−s0)
00 ) roots γ1, . . . , γt0 . Thus

R(u0, . . . ,un) = A
t0∏

τ=1

(
u(s−s0)

00 − γτ

)
(16)

where A ∈ Q0. Let Iu = [P0, . . . , Pn] ∩ Q{u0, . . . , un}. By the definition of the difference resultant, 
Iu is an essential reflexive prime difference ideal in the decomposition of {R} which is not held 
by any difference polynomial of order less than s − s0 in u00. Suppose R, R1, R2, . . . is a basic se-
quence4 of R corresponding to Iu . That is, Iu =⋃

k≥0 asat(R, R1, . . . , Rk). Regard all the Ri as algebraic 
polynomials over the coefficient field Q〈̃u〉. Denote γτ0 = γτ . Clearly, u(s−s0)

00 = γτ0 is a generic 
zero of asat(R). Suppose γτ i (i ≤ k) are found in some algebraic extension field of Q0 such that 
u(s−s0+i)

00 = γτ i (0 ≤ i ≤ k) is a generic zero of asat(R, R1, . . . , Rk). Then let γτ,k+1 be an element such 
that u(s−s0+i)

00 = γτ i (0 ≤ i ≤ k + 1) is a generic zero of asat(R, R1, . . . , Rk, Rk+1). Clearly, γτ,k+1 is also 
algebraic over Q0. Let Gτ = Q〈̃u〉(u00, . . . , u

(s−s0−1)
00 , γτ , γτ1, . . .). Clearly, Gτ is an algebraic extension 

4 For the rigorous definition of basic sequence, please refer to Cohn (1948). Here, we list its basic properties: i) For each 
k ≥ 0, ord(Rk, u00) = s − s0 + k and R, R1, . . . , Rk is an irreducible algebraic ascending chain, and ii) ⋃k≥0 asat(R, R1, . . . , Rk) is 
a reflexive prime difference ideal.
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of Q0 and Gτ is algebraically isomorphic to the quotient field of Q{u0, . . . , un}/Iu . Since the quotient 
field of Q{u0, . . . , un}/Iu is also a difference field, we can introduce a transforming operator στ into 
Gτ to make it a difference field such that the above isomorphism becomes a difference one. That is, 
στ |Q0 = σ |Q0 and

σ k
τ (u00) =

{
u(k)

00 0 ≤ k ≤ s − s0 − 1
γτ,k−s−s0 k ≥ s − s0

In this way, (Gτ , στ ) is a difference field.
Let F be a difference polynomial in Q{u0, u1, . . . , un} = Q{̃u, u00}. For convenience, by the symbol 

F |
u

(s−s0)

00 =γτ
, we mean substituting u(s−s0+k)

00 by σ k
τ γτ = γτk (k ≥ 0) into F . Similarly, by saying F

vanishes at u(s−s0)
00 = γτ , we mean F |

u
(s−s0)

00 =γτ
= 0. The following lemma is a direct consequence of 

the above discussion.

Lemma 83. F ∈ Iu if and only if F vanishes at u(s−s0)
00 = γτ .

Proof. Since Iu = ⋃
k≥0 asat(R, R1, . . . , Rk) and u(s−s0+i)

00 = γτ i (0 ≤ i ≤ k) is a generic zero of 
asat(R, R1, . . . , Rk), the lemma follows. �
Remark 84. In order to make Gτ a difference field, we need to introduce a transforming operator στ

which is closely related to γτ . Since even for a fixed τ , generic zeros of asat(R, R1, . . . , Rk) beginning 
from u(s−s0)

00 = γτ may not be unique, the definition of στ also may not be unique, which is different 
from the differential case. In fact, it is a common phenomenon in difference algebra. Here, we just 
choose one, for they do not influence the following discussions.

Now we give the following Poisson type formula for the difference resultant.

Theorem 85. Let R be the difference resultant of P0, . . . , Pn. Let deg(R, u(s−s0)
00 ) = t0 . Then there exist ξτk

(τ = 1, . . . , t0; k = 1, . . . , n) in extension fields (Gτ , στ ) of (Q〈̃u〉, σ) such that

R = A
t0∏

τ=1

P0(ξτ1, . . . , ξτn)
(s−s0), (17)

with A ∈Q〈̃u〉[u[s−s0−1]
00 ]. Note that (17) is formal and it should be understood as P0(ξτ )(s−s0) �= σ s−s0 u00 +

σ
s−s0
τ (

∑
α∈B0\{0} u0α(ξ

[s−s0]
τ )α) where ξτ = (ξτ1, . . . , ξτn).

Proof. By Theorem 37, there exists m ∈N such that

u00
∂R

∂u00
+
∑
α

u0α
∂R

∂u0α
= mR.

Setting u(s−s0)
00 = γτ in both sides of the above equation, we have

u00
∂R

∂u00

∣∣∣∣
u

(s−s0)

00 =γτ

+
∑
α

u0α
∂R

∂u0α

∣∣∣∣
u

(s−s0)

00 =γτ

= 0.

Let ξτα = ( ∂R
∂u0α

/ ∂R
∂u00

)|
u

(s−s0)

00 =γτ
. Then u00 = − 

∑
α u0αξτα with u(s−s0)

00 = γτ . That is, γτ =
−σ

s−s0
τ (

∑
α u0αξτα) = −(

∑
α u0αξτα)(s−s0) . Thus,

R = A
t0∏(

u00 +
∑
α

u0αξτα

)(s−s0)

.

τ=1
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Suppose P0 = u00 + ∑n
j=1 u0 j0 y j + T0. Let ξτ j = ( ∂R

∂u0 j0
/ ∂R

∂u00
)|

u
(s−s0)

00 =γτ
( j = 1, . . . , n) and ξτ =

(ξτ1, . . . , ξτn). It remains to show that ξτα = (ξ
[s0]
τ )α .

Let ζi = − 
∑

α uiα(Y[si ])α (i = 0, . . . , n). Clearly, ζ = (u, ζ0, . . . , ζn) is a generic zero of Iu =
[P0, . . . , Pn] ∩ Q{u0, . . . , un}, where u =⋃n

i=1 ui\{ui0}. For each (Y[s0])α =∏n
j=1(y(k)

j )m jk , by Eq. (9), 

(Y[s0])α = ∂R
∂u0α

/ ∂R
∂u00

= ∏n
j=1

∏s0
k=0((

∂R
∂u0 j0

/ ∂R
∂u00

)(k))m jk , where ∂R
∂u0α

= ∂R
∂u0α

|ui0=ζi . So
∂R

∂u0α

∏n
j=1

∏s0
k=0((

∂R
∂u00

)(k))m jk − ∂R
∂u00

∏n
j=1

∏s0
k=0((

∂R
∂u0 j0

)(k))m jk ∈ Iu . By Lemma 83, ξτα =∏n
j=1

∏s0
k=0(ξ

(k)
τ j )m jk = (ξ

[s0]
τ )α . Thus, (17) follows. �

Theorem 86. The points ξτ = (ξτ1, . . . , ξτn) (τ = 1, . . . , t0) in (17) are generic zeros of the difference ideal 
[P1, . . . , Pn]Q〈u1,...,un〉{Y} .

Proof. Clearly, ξτ are n-tuples over Q〈u1, . . . , un〉. For each i = 1, . . . , n, rewrite Pi = ui0 +∑
α uiα

∏n
j=1

∏si
k=1(y(k)

j )α jk . Since ζi = − 
∑

α uiα
∏n

j=1
∏si

k=1(y(k)
j )α jk and y j = ∂R

∂u0 j0
/ ∂R

∂u00
, ζi +∑

α uiα
∏n

j=1
∏si

k=1((
∂R

∂u0 j0
/ ∂R

∂u00
)(k))α jk = 0. Let a jk = maxα α jk , then ui0

∏n
j=1

∏si
k=1((

∂R
∂u00

)(k))a jk +∑
α uiα

∏n
j=1

∏si
k=1((

∂R
∂u0 j0

)(k))α jk (( ∂R
∂u00

)(k))a jk−α jk ∈ Iu . Thus, by Lemma 83, Pi(ξτ ) = ui0 +∑
α uiα

∏n
j=1

∏si
k=1(ξ

(k)
τ j )α jk = 0 (i = 1, . . . , n).

On the other hand, suppose F ∈ Q〈u1, . . . , un〉{Y} vanishes at ξτ . Without loss of generality, 
suppose F ∈ Q{u1, . . . , un, Y}. Clearly, P1, . . . , Pn constitute an ascending chain in Q{u1, . . . , un, Y}
with ui0 as leaders. Let G be the difference remainder of F with respect to this ascending chain. 
Then G is free from ui0 and F ≡ G mod[P1, . . . , Pn]. Then G(ξτ ) = G (̃u; ξτ1, . . . , ξτn) = 0, where 
ũ = ⋃n

i=1 ui\{ui0}. So there exist ak ∈ N such that G1 = ∏
k((

∂R
∂u00

)(k))ak G (̃u; Y) ∈ Iu . Thus, G1 van-

ishes at ui0 = ζi (i = 1, . . . , n) while ∂R
∂u00

does not. It follows that G (̃u; Y) ≡ 0 and F ∈ [P1, . . . , Pn]. 
So ξτ are generic zeros of [P1, . . . , Pn]Q〈u1,...,un〉{Y} . �

By Theorems 85 and 86, we can see that difference resultants have Poisson-type product formula, 
which is similar to their algebraic and differential analogues.

We conclude this section by proving the following theorem, which explores the relationship be-
tween the difference resultant and the solvability of the given systems.

Theorem 87. Let R be the difference resultant of P0, . . . , Pn. Suppose when each ui is specialized to vi , Pi is 
specialized to Pi . If P0 = · · · = Pn = 0 has a common difference solution, then R(v0, . . . , vn) = 0. Moreover, 
if R(v0, . . . , vn) = 0 and ∂R

∂u00
(v0, . . . , vn) �= 0, then P0 = · · · = Pn = 0 has at most one solution ( ȳ1, . . . , ȳn)

with each ȳk = ( ∂R
∂u0k

/ ∂R
∂u00

)(v0, . . . , vn), where u0k is the coefficient of yk in P0 .

Proof. Suppose Pi = ui0 + Ti (i = 1, . . . , n) and u =⋃n
i=0 ui\{ui0}. Clearly, (Y; u, −T0(Y), . . . , −Tn(Y))

is a generic zero of [P0, . . . , Pn]Q{Y;u0,...,un} . Taking the partial derivative of R(u; −T0(Y), . . . ,
−Tn(Y)) = 0 w.r.t. u0k , we can show that ∂R

∂u00
yk − ∂R

∂u0k
∈ [P0, . . . , Pn] (k = 1, . . . , n). If P0 = · · · =

Pn = 0 has a common solution ξ , then (ξ ; v0, . . . , vn) is a common solution of [P0, . . . , Pn]. Since R ∈
[P0, . . . , Pn], R must vanish at (v0, . . . , vn). Now suppose R(v0, . . . , vn) = 0 and ∂R

∂u00
(v0, . . . , vn) �= 0. 

If ( ȳ1, . . . , ȳn) is a common solution of Pi = 0, then each ∂R
∂u00

yk − ∂R
∂u0k

vanishes at ( ȳ1, . . . , ȳn; v0,

. . . , vn). Thus, ȳk = ( ∂R
∂u0k

/ ∂R
∂u00

)(v0, . . . , vn), since ∂R
∂u00

(v0, . . . , vn) �= 0. Hence, the second assertion 
holds. �
Remark 88. If Problem 23 can be solved positively, then Theorem 87 can be strengthened as follows: 
If R(v0, . . . , vn) = 0 and ∂R

∂u00
(v0, . . . , vn) �= 0, then P0 = · · · = Pn = 0 has a unique solution ( ȳ1, . . . , ȳn)

with each ȳk = ( ∂R
∂u0k

/ ∂R
∂u00

)(v0, . . . , vn).
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8. Conclusion and problem

In this paper, we first introduce the concepts of Laurent difference polynomial and Laurent trans-
formally essential system and give a criterion for a difference polynomial system to be Laurent 
transformally essential in terms of its supports. Then the sparse difference resultant for a Laurent 
transformally essential system is defined and its basic properties are proved. Furthermore, order and 
degree bounds for the sparse difference resultant are given. Based on these bounds, an algorithm 
to compute the sparse difference resultant is proposed, which is single exponential in terms of the 
Jacobi number, the number of variables, and the size of the system. Besides these, the difference re-
sultant is introduced and its basic properties are given, such as its precise order and BKK style degree, 
determinant representation, and a Poisson-type product formula.

We now propose several questions for further study apart from Problem 23.
The degree of the algebraic sparse resultant is equal to the mixed volume of certain polytopes 

generated by the supports of the polynomials as shown in Pedersen and Sturmfels (1993) or Gelfand 
et al. (1994, p. 255). And Theorem 79 shows that the degree of difference resultants is exactly of such 
BKK-style. It is desirable to obtain such a bound for sparse difference resultant. For more details, see 
Remark 71.

There exist very efficient algorithms to compute algebraic sparse resultants (Emiris, 1996; Emiris 
and Canny, 1995; Emiris and Pan, 2005; D’Andrea, 2002), which are based on matrix representations 
for the resultant. How to apply the principles behind these algorithms to compute sparse difference 
resultants is an important problem.

In the algebraic case, it is well known that the resultant vanishes if and only if the corresponding 
system of homogenous polynomials has common solutions in the projective space (Hodge and Pedoe, 
1968). So it is interesting to see whether this result can be extended to the difference case. However, 
the corresponding result in the difference case might not be valid due to the reason that the projec-
tive difference space is not complete as shown in Theorem 46. In algebraic geometry, the fact that 
the projective space is complete plays a crucial role. Moreover, comparing with their algebraic and 
differential counterparts, difference fields have many surprising phenomena (Cohn, 1952).

Algebraic resultants and sparse resultants have many interesting applications (Canny, 1990; Cox et 
al., 1998; Emiris and Mourrain, 1999; Gelfand et al., 1994). It is desirable to develop the corresponding 
theory for difference polynomial systems based on difference resultants.
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